Explanation:
electrovalent bond covers single bond.
Covalent bond covers double or more bonds.
Answer:
-800 kJ/mol
Explanation:
To solve the problem, we have to express the enthalpy of combustion (ΔHc) in kJ per mole (kJ/mol).
First, we have to calculate the moles of methane (CH₄) there are in 2.50 g of substance. For this, we divide the mass into the molecular weight Mw) of CH₄:
Mw(CH₄) = 12 g/mol C + (1 g/mol H x 4) = 16 g/mol
moles CH₄ = mass CH₄/Mw(CH₄)= 2.50 g/(16 g/mol) = 0.15625 mol CH₄
Now, we divide the heat released into the moles of CH₄ to obtain the enthalpy per mole of CH₄:
ΔHc = heat/mol CH₄ = 125 kJ/(0.15625 mol) = 800 kJ/mol
Therefore, the enthalpy of combustion of methane is -800 kJ/mol (the minus sign indicated that the heat is released).
Answer:
Ask a question?
Explanation:
look at the scientific method uwu
Answer: There was a lower concentration of salt in the water than in the cells.
Explanation:
Osmosis is a process in which the solvent flow from a solution of low concentration to a solution of high concentration through a semi-permeable membrane.
When the red blood cells are put in water that contained salt and the red blood cells burst after some time.
This means the solvent has moved from outside to inside the cell and this is possible only when the concentration of solute is high inside the cell than outside. That means the solution has low concentration of solute as compared to the cell and was a hypotonic solution.
I think the answer would be Ionic sodium phosphate (Na3PO4) because it has the greatest boiling point elevation.