410g Ag
2.3*10^24 atoms
1 molcule Ag- 6.02g*10^3
Answer:
1.874 M.
Explanation:
<em>Molarity is defined as the no. of moles of a solute per 1.0 L of the solution.</em>
<em />
M = (no. of moles of solute)/(V of the solution (L)).
<em>∴ M = (mass/molar mass)of NiCl₂/(V of the solution (L)).</em>
<em></em>
∴ M = (mass/molar mass)of NiCl₂/(V of the solution (L)) = (85.0 g / 129.59 g/mol)/(0.35 L) = 1.874 M.
The answer to that question would be Activation energy. If would like me to elaborate just let me know. :)
Answer:
Azide synthesis is the first method on the table of synthesis of primary amines. The Lewis structure of the azide ion, N3−, is as shown below.
an azide ion
An “imide” is a compound in which an N−−H group is attached to two carbonyl groups; that is,
imide linkage
You should note the commonly used trivial names of the following compounds.
phthalic acid, phthalic anhydride, and phthalimide
The phthalimide alkylation mentioned in the reading is also known as the Gabriel synthesis.
If necessary, review the reduction of nitriles (Section 20.7) and the reduction of amides (Section 21.7).
Before you read the section on reductive amination you may wish to remind yourself of the structure of an imine (see Section 19.8).
The Hofmann rearrangement is usually called the Hofmann degradation. In a true rearrangement reaction, no atoms are lost or gained; however, in this particular reaction one atom of carbon and one atom of oxygen are lost from the amide starting material, thus the term “rearrangement” is not really appropriate. There is a rearrangement step in the overall degradation process, however: this is the step in which the alkyl group of the acyl nitrene migrates from carbon to nitrogen to produce an isocyanate.
Explanation:
Hey there!
The atomic mass of nitrogen is 14.007 amu.
This information is found on the periodic table, below the symbol for the element.
Nitrogen is located in the 2nd period and the 15th group.
Hope this helps!