Answer:
a) P(X = 0) = 0.5997
b) P(X = 9) = 0.0016
c) P(X = 8) = 0.0047
d) P(X = 5) = 0.4018
Step-by-step explanation:
These following problem are examples of the binomial probability distribution.
Binomial probability
Th binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinatios of x objects from a set of n elements, given by the following formula.

And
is the probability of X happening.
(a) for n = 4 and π = 0.12, what is P(X = 0)?

(b) for n = 10 and π = 0.40, what is P(X = 9)?

(c) for n = 10 and π = 0.50, what is P(X = 8)?

(d) for n = 6 and π = 0.83, what is P(X = 5)?

Answer:
Step-by-step explanation:
Given: The radius is 6 cm
To find the area + circumference we need to use 2 formulas:
Area: pi* radius^2
Circumference: 2*pi*r
First we can do the area
I will use "pi" for pi instead of 3.14
pi * 6^2
= 36 pi
The area is 36 pi
Next, circumference
2 * pi *r
2*pi*6
= 12 pi
So the area is 36 pi, and the circumference is 12 pi


- <u>We </u><u>have </u><u>given </u><u>that </u><u>the </u><u>coordinates </u><u>of </u><u>the </u><u>end </u><u>point </u><u>G </u><u>and </u><u>H </u><u>are </u><u>(</u><u> </u><u>-</u><u>6</u><u>,</u><u>5</u><u>)</u><u> </u><u>and </u><u>(</u><u> </u><u>2</u><u>,</u><u> </u><u>-</u><u>7</u><u> </u><u>)</u>

- <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>length </u><u>of </u><u>GH </u>

The coordinates of G = ( -6 , 5 )
The coordinates of H = ( 2 , - 7 )
<u>According </u><u>to </u><u>the </u><u>distance </u><u>formula</u><u>, </u><u> </u><u>we </u><u>get </u><u>:</u><u>-</u><u> </u>

- <u>Here</u><u>, </u><u> </u><u>x1</u><u> </u><u>=</u><u> </u><u>-</u><u>6</u><u> </u><u>,</u><u> </u><u>x2</u><u> </u><u>=</u><u> </u><u>2</u><u> </u><u>and </u><u>y1</u><u> </u><u>=</u><u> </u><u>5</u><u> </u><u>,</u><u> </u><u>y2</u><u> </u><u>=</u><u> </u><u>-</u><u>7</u>
<u>Subsitute </u><u>the </u><u>required </u><u>values </u><u>in </u><u>the </u><u>above </u><u>formula </u>








Answer:
The appropriate null hypothesis is 
The appropriate alternative hypothesis is 
Step-by-step explanation:
Exactly a year prior to this poll, in June of 2004, it was estimated that roughly 1 out of every 4 U.S. adults believed (at that time) that the war in Iraq was the most important problem facing the country.
At the null hypothesis, we test if the proportion is still the same, that is, of
. So

We would like to test whether the 2005 poll provides significant evidence that the proportion of U.S. adults who believe that the war in Iraq is the most important problem facing the U.S. has decreased since the prior poll.
Decreased, so at the alternative hypothesis, it is tested if the proportion is less than 0.25, that is:

So, we'll say Mia gets $4.50 a day, since a standard weekend is two days, therefore adding up to $9 a weekend. So if Mia were to do her chores for 4 weekends, she'd have a total of $36 but not $40. So if she were to work an extra weekend, so 5 weekends, she'd have a total of $45. So you can say 5 weekends in order to earn more than $40.