#1
As we are increasing the frequency in the simulation the wavelength is decreasing
So if speed remains constant then wavelength and frequency depends inversely on each other
If we are in boat and and moving over very small wavelengths then these small wavelength will be encountered continuously by the boat in short interval of times
#2
As we are changing the amplitude in the simulation there is no change in the speed frequency and wavelength.
So amplitude is independent of all these parameter
Amplitude of wave will decide the energy of wave
So light of greater intensity is the light of larger amplitude
#3
In our daily life we deal with two waves
1 sound waves
2 light waves
Answer:

Explanation:
<u>Uniform Acceleration
</u>
When an object changes its velocity at the same rate, the acceleration is constant.
The relation between the initial and final speeds is:

Where:
vf = Final speed
vo = Initial speed
a = Constant acceleration
t = Elapsed time
It's known a train moves from rest (vo=0) to a speed of vf=25 m/s in t=30 seconds. It's required to calculate the acceleration.
Solving for a:

Substituting:


Answer:
19 m/s
Explanation:
The complete question requires the final speed to be calculated.
Velocity is the rate and direction at which an object moves. Acceleration is the rate of change of velocity per unit time and can be calculated by the difference in velocity over a given time.
For this question, first the unknown acceleration must be calculated and used to determine the final velocity
Step 1: Calculate the acceleration




Step 2: Calculate the velocity using the acceleration calculated above


