Answer:
120 m
Explanation:
Given:
wavelength 'λ' = 2.4m
pulse width 'τ'= 100T ('T' is the time of one oscillation)
The below inequality express the range of distances to an object that radar can detect
τc/2 < x < Tc/2 ---->eq(1)
Where, τc/2 is the shortest distance
First we'll calculate Frequency 'f' in order to determine time of one oscillation 'T'
f = c/λ (c= speed of light i.e 3 x
m/s)
f= 3 x
/ 2.4
f=1.25 x
hz.
As, T= 1/f
time of one oscillation T= 1/1.25 x
T= 8 x
s
It was given that pulse width 'τ'= 100T
τ= 100 x 8 x
=> 800 x
s
From eq(1), we can conclude that the shortest distance to an object that this radar can detect:
= τc/2 => (800 x
x 3 x
)/2
=120m
Answer:
<em>the phase relationship between two waves.</em>
<em></em>
Explanation:
Coherence describes all properties of the correlation between physical quantities between waves. It is an ideal property of waves that determines their interference. In a situation in which there is a correlation or phase relationship between two waves. If the properties of one of the waves can be measure directly, then, some of the properties of the other wave can be calculated.
Answer:

Explanation:
Given that
For straight wire
Charge density= λ
For hollow metal cylinder
Charge density=2 λ
We know that electric filed for wire given as


Now the electric filed due to hollow metal cylinder


Now by considering the Gaussian surface r<R then only electric fild due to wire will present.So
At r<R

F=ma therefore 25kg*1.0m/s^2=25N force on the mass
Answer:
Solution is given in the attachments,below.