Most directly on equador and least directly at poluses
Answer:
passive voice
many messengers all over the world was sent by emperor Ashoka to preach Buddhism.
Which pen was liked by you?
Has your passport size photo been taken for the application form?
A beautiful bicycle was given to me on my birthday by my father.
The plants is being watered by the gardener.
Paul said that he will never leave you and he will always be with you.
centrifugal force is a fictitious force. What is happening is that since the earth itself is not a rigid body it will deform when under motion. Although gravity attempts to make the earth spherical, as it is rotating the earth deforms, in such away that it flattens to become an oblique spheroid. This happens as the material at the equator must have a net resultant centripetal force (not centrifugal) which causes its position of equilibrium from the center of the earth to be further away than at the poles as they do not have this force as they are not rotating around the center of mass.
Answer:
the resulting angular acceleration is 15.65 rad/s²
Explanation:
Given the data in the question;
force generated in the patellar tendon F = 400 N
patellar tendon attaches to the tibia at a 20° angle 3 cm( 0.03 m ) from the axis of rotation at the knee.
so Torque produced by the knee will be;
T = F × d⊥
T = 400 N × 0.03 m × sin( 20° )
T = 400 N × 0.03 m × 0.342
T = 4.104 N.m
Now, we determine the moment of inertia of the knee
I = mk²
given that; the lower leg and foot have a combined mass of 4.2kg and a given radius of gyration of 25 cm ( 0.25 m )
we substitute
I = 4.2 kg × ( 0.25 m )²
I = 4.2 kg × 0.0626 m²
I = 0.2625 kg.m²
So from the relation of Moment of inertia, Torque and angular acceleration;
T = I∝
we make angular acceleration ∝, subject of the formula
∝ = T / I
we substitute
∝ = 4.104 / 0.2625
∝ = 15.65 rad/s²
Therefore, the resulting angular acceleration is 15.65 rad/s²