Answer:
The air molecules that are surrounding the metal will speed up, and the molecules in the metal will slow down.
Explanation:
There will be a transfer of thermal energy (heat) from the hot metal plate to the surrounding air. This transfer of energy equates to a transfer of kinetic energy in the molecules. As the plate loses heat, the molecules in the plate will lose kinetic energy and slow down. As the surrounding air gains heat, the molecules will gain kinetic energy and speed up.
We need an equation that would relate the concentration of the original solution to that of the desired solution. To solve this we use the equation expressed as follows,
M1V1 = M2V2
where M1 is the concentration
of the stock solution, V1 is the volume of the stock solution, M2 is the
concentration of the new solution and V2 is its volume.
M1V1 = M2V2
0.266 M x V1 = 0.075 M x 150 mL
V1 = 42.29 mL
Therefore, we need about 42.29 mL of the 0.266 M of lithium nitrate solution to make 150.0 mL of the 0.075 M lithium nitrate solution.
Answer:
15.0 µm
Step-by-step explanation:
Density = mass/volume
D = m/V Multiply each side by V
DV = m Divide each side by D
V = m/D
Data:
m = 1.091 g
D = 7.28 g/cm³
l = 10.0 cm
w = 10.0 cm
Calculation:
<em>(a) Volume of foil
</em>
V = 1.091 g × (1 cm³/7.28 g)
= 0.1499 cm³
(b) <em>Thickness of foil
</em>
The foil is a rectangular solid.
V = lwh Divide each side by lw
h = V/(lw)
= 0.1499/(10 × 10)
= 1.50 × 10⁻³ cm Convert to millimetres
= 0.015 mm Convert to micrometres
= 15.0 µm
The foil is 15.0 µm thick.
Answer:
Explanation:
I did this class yesterday give me like 10min imma find my anwsers