The branched alkanes in boxes two and three all have molecular formula C6H14 and are isomers of the compound shown.
Isomers are compounds that has the same molecular formula but different structural formulas. Hence, isomers of compounds can be represented by the same molecular formula since they contain the same number of each atom.
The molecule shown has molecular formula C6H14. The branched alkanes in boxes two and three all have molecular formula C6H14 and are isomers of the compound shown.
Learn more about isomers: brainly.com/question/1558338
Answer:
91.7°C
Explanation:
We suppose you have a formula to work from. However, that is not supplied with this problem statement, so we looked one up.
The formula in the attachment is supposed to have good accuracy in the temperature range of interest. It gives vapor pressure of water in kPa, not mmHg, so we needed the conversion for that, too.
560 mmHg corresponds to about 74.66 kPa. The attached "Buck equation" formula is used to find the corresponding temperature. The exponential equation could be solved algebraically using logarithms and the quadratic formula, but we choose to find the solution graphically.
Water boils at about 91.7 °C on Mt. Whitney.
In order to obtain solid NaCl, the student should do a few steps.
First, he/she should do filtration. Pass the mixture through a filter paper, where all the sand should be filtered out already because they're not dissolved in the solution plus they're too small to pass through the filter paper.
Next, the filtrate should be left with NaCl (aqueous state). To seperate NaCl with the liquid, the student can either do evaporation or crystallization, depending on how pure or fast he/she wants the results to be. Evaporation involves heating the beaker or whatever apparatus under the bunsen burner until all the liquid has evaporated. Then, some white powder should be left, they're NaCl solid. For crystallization, the student should just put the beaker on a room condition environment, and wait. They might have to wait a month or so for the liquid to completely evaporate itself and left with clear and pure NaCl crystals.
Answer:
How do you find the density of a liquid experiment?
To measure the density of a liquid you do the same thing you would for a solid. Mass the fluid, find its volume, and divide mass by volume. To mass the fluid, weigh it in a container, pour it out, weigh the empty container, and subtract the mass of the empty container from the full container.