Answer:
1/2 ; 1/4
Step-by-step explanation:
Number of cards in a deck = 52
Number of red cards = 26
Number of spades = 13
Probability of event A :
P(A) = required outcome / Total possible outcomes
P( red card) = number of red cards / total cards in deck
P(red card) = 26 / 52 = 1/2
P(spade) = number of spades / total cards in deck
P(red card) = 13 / 52 = 1 / 4
Answer:
<u>⚪</u><u> </u><u>(</u><u>4</u><u> </u><u>•</u><u> </u><u>3</u><u>)</u><u> </u><u>+</u><u> </u><u>(</u><u>4</u><u> </u><u>•</u><u> </u><u>8</u><u>)</u>
Step-by-step explanation:

by distributing 4 in the bracket:

Answer:
3
Step-by-step explanation:
Same sides
Answer:
Step-by-step explanation:
Given the expression cosec (x) = 4 and tan(x)< 0
since cosec x = 1/sinx
1/sinx = 4
sinx = 1/4
From SOH, CAH TOA
sinθ = opposite/hypotenuse
from sinx = 1/4
opposite = 1 and hypotenuse = 4
to get the adjacent, we will use the Pythagoras theorem
adj² = 4²-1²
adj² = 16-1
adj ²= 15
adj = √15
cosx = adj/hyp = √15/4
tanx = opposite/adjacent = 1/√15
since tan < 0, then tanx = -1/√15
From double angle formula;
sin2x = 2sinxcosx
sin2x = 2(1/4)(√15/4)
sin2x = 2√15/16
sin2x = √15/8
for cos2x;
cos2x = 1-2sin²x
cos2x = 1-2(1/4)²
cos2x = 1-2(1/16)
cos2x= 1-1/8
cos2x = 7/8
for tan2x;
tan2x = tanx + tanx/1-tan²x
tan2x = 2tanx/1-tan²x
tan2x = 2(-1/√15)/1-(-1/√15)²
tan2x = (-2/√15)/(1-1/15)
tan2x = (-2/√15)/(14/15)
tan2x = -2/√15 * 15/14
tan2x = -30/14√15
tan2x = -30/7√15
rationalize
tan2x = -30/7√15 * √15/√15
tan2x = -30√15/7*15
tan2x = -2√15/7