1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
eduard
3 years ago
10

Find the area of the region enclosed by the graphs of the functions

Mathematics
1 answer:
Vaselesa [24]3 years ago
6 0

Answer:

\displaystyle A = \frac{8}{21}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Terms/Coefficients
  • Functions
  • Function Notation
  • Graphing
  • Solving systems of equations

<u>Calculus</u>

Area - Integrals

Integration Rule [Reverse Power Rule]:                                                                 \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                      \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Addition/Subtraction]:                                                          \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

*Note:

<em>Remember that for the Area of a Region, it is top function minus bottom function.</em>

<u />

<u>Step 1: Define</u>

f(x) = x²

g(x) = x⁶

Bounded (Partitioned) by x-axis

<u>Step 2: Identify Bounds of Integration</u>

<em>Find where the functions intersect (x-values) to determine the bounds of integration.</em>

Simply graph the functions to see where the functions intersect (See Graph Attachment).

Interval: [-1, 1]

Lower bound: -1

Upper Bound: 1

<u>Step 3: Find Area of Region</u>

<em>Integration</em>

  1. Substitute in variables [Area of a Region Formula]:                                     \displaystyle A = \int\limits^1_{-1} {[x^2 - x^6]} \, dx
  2. [Area] Rewrite [Integration Property - Subtraction]:                                     \displaystyle A = \int\limits^1_{-1} {x^2} \, dx - \int\limits^1_{-1} {x^6} \, dx
  3. [Area] Integrate [Integration Rule - Reverse Power Rule]:                           \displaystyle A = \frac{x^3}{3} \bigg| \limit^1_{-1} - \frac{x^7}{7} \bigg| \limit^1_{-1}
  4. [Area] Evaluate [Integration Rule - FTC 1]:                                                    \displaystyle A = \frac{2}{3} - \frac{2}{7}
  5. [Area] Subtract:                                                                                               \displaystyle A = \frac{8}{21}

Topic: AP Calculus AB/BC (Calculus I/II)  

Unit: Area Under the Curve - Area of a Region (Integration)  

Book: College Calculus 10e

You might be interested in
NEED AN ANSWER ASAP
Yuki888 [10]

Step-by-step explanation:

When X is - 5 then y is 3

When X is-1 then y is - 2

When X is 3 then y is -4

6 0
3 years ago
You have $5600. The best interest rate you can find is 3%
EleoNora [17]

Answer:

18 years

Step-by-step explanation:

The formula for computing accrued amount A for a principal of P at an interest rate of r(in decimal) compounded n times in a year for t years is given by

A = P(1 + \frac{r}{n})^{nt}

Note that r is percentage converted to decimal. So 3% = 3/100 = 0.03

We can rearrange the above equation to:

\frac{A}{P} = (1 + \frac{r}{n})^{nt}

Taking logs on both sides

log(\frac{A}{P}) = log(1 + \frac{r}{n})^{nt}

This gives

log(\frac{A}{P}) =nt \times log(1 + \frac{r}{n})\\So,\\nt = \frac{log(\frac{A}{P})}{ log(1 + \frac{r}{n})}

In this particular problem, n = 4, , A= 9600, P = 5600, r =0.03, so r/n = 0.03/4 = 0.0075

1 + r/n = 1+0.0075 = 1.0075

4t = log(9600/5600)/log(1.0075) = log(1.714) / log(1.0075) = 0.234 /0.00325 = 72

t = 72/4 = 18 years

4 0
2 years ago
How do you simplify (2xy2)3
pantera1 [17]
(2xy^{2})^{3} = (2xy^{2})(2xy^{2})(2xy^{2})
Now, we can just multiply it and obtain the result
(2xy^{2})(2xy^{2})(2xy^{2})=(4x^{2}y^{4})(2xy^{2})=8x^{3}y^{6}

I used law presented on this example
2^{3}*2=2^{3}*2^{1}=2^{3+1}=2^{4}
4 0
3 years ago
Guys plz help me!!!!!!!!
Rainbow [258]

Answer:

63.62

Step-by-step explanation:

3 0
2 years ago
PLSSS HELP IF YOU TURLY KNOW THISS
Nikolay [14]

8²

(8^3)(8^-2)(8^1)

=512(8^-2)(8^1)

=512(1/64)(8^1)

=8(8^1)

=(8)(8)

=64

√64=8

(8•8 so 8²)

4 0
2 years ago
Read 2 more answers
Other questions:
  • Factor −14 out of −12x−54y.
    11·1 answer
  • Find the slope of a line perpendicular to the line whose equation is 4y + 5x = 16.
    10·1 answer
  • Find two consecutive odd numbers whose sum is 36
    5·1 answer
  • reggie is making a double layer cake the recipe for the first layer 2 1/4 cups of sugar the recipe for the second layer calls fo
    10·1 answer
  • Write one word problem involving simultaneous linear equations.
    11·1 answer
  • <img src="https://tex.z-dn.net/?f=%20%7Bx%7D%5E%7B2%7D%20%2B%202%20%5Csqrt%7B2%7Dx%20-%206%20" id="TexFormula1" title=" {x}^{2}
    12·1 answer
  • Michael misses 10% of the free throws he attempts in a season. How many total free throws did he attempt if he missed 19?
    7·2 answers
  • 3(3=4)2=?<br><br><br><br> HELP PLS , i will mark you brainliest :)
    10·1 answer
  • 4. What is the experimental probability of spinning orange?
    13·2 answers
  • Which amount is greater 8/16 or 9/12
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!