Answer:
![\displaystyle A = \frac{8}{21}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cfrac%7B8%7D%7B21%7D)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Algebra I</u>
- Terms/Coefficients
- Functions
- Function Notation
- Graphing
- Solving systems of equations
<u>Calculus</u>
Area - Integrals
Integration Rule [Reverse Power Rule]: ![\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7Bx%5En%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Bx%5E%7Bn%20%2B%201%7D%7D%7Bn%20%2B%201%7D%20%2B%20C)
Integration Rule [Fundamental Theorem of Calculus 1]: ![\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5Eb_a%20%7Bf%28x%29%7D%20%5C%2C%20dx%20%3D%20F%28b%29%20-%20F%28a%29)
Integration Property [Addition/Subtraction]: ![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7B%5Bf%28x%29%20%5Cpm%20g%28x%29%5D%7D%20%5C%2C%20dx%20%3D%20%5Cint%20%7Bf%28x%29%7D%20%5C%2C%20dx%20%5Cpm%20%5Cint%20%7Bg%28x%29%7D%20%5C%2C%20dx)
Area of a Region Formula: ![\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cint%5Climits%5Eb_a%20%7B%5Bf%28x%29%20-%20g%28x%29%5D%7D%20%5C%2C%20dx)
Step-by-step explanation:
*Note:
<em>Remember that for the Area of a Region, it is top function minus bottom function.</em>
<u />
<u>Step 1: Define</u>
f(x) = x²
g(x) = x⁶
Bounded (Partitioned) by x-axis
<u>Step 2: Identify Bounds of Integration</u>
<em>Find where the functions intersect (x-values) to determine the bounds of integration.</em>
Simply graph the functions to see where the functions intersect (See Graph Attachment).
Interval: [-1, 1]
Lower bound: -1
Upper Bound: 1
<u>Step 3: Find Area of Region</u>
<em>Integration</em>
- Substitute in variables [Area of a Region Formula]:
![\displaystyle A = \int\limits^1_{-1} {[x^2 - x^6]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cint%5Climits%5E1_%7B-1%7D%20%7B%5Bx%5E2%20-%20x%5E6%5D%7D%20%5C%2C%20dx)
- [Area] Rewrite [Integration Property - Subtraction]:
![\displaystyle A = \int\limits^1_{-1} {x^2} \, dx - \int\limits^1_{-1} {x^6} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cint%5Climits%5E1_%7B-1%7D%20%7Bx%5E2%7D%20%5C%2C%20dx%20-%20%5Cint%5Climits%5E1_%7B-1%7D%20%7Bx%5E6%7D%20%5C%2C%20dx)
- [Area] Integrate [Integration Rule - Reverse Power Rule]:
![\displaystyle A = \frac{x^3}{3} \bigg| \limit^1_{-1} - \frac{x^7}{7} \bigg| \limit^1_{-1}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cfrac%7Bx%5E3%7D%7B3%7D%20%5Cbigg%7C%20%5Climit%5E1_%7B-1%7D%20-%20%5Cfrac%7Bx%5E7%7D%7B7%7D%20%5Cbigg%7C%20%5Climit%5E1_%7B-1%7D)
- [Area] Evaluate [Integration Rule - FTC 1]:
![\displaystyle A = \frac{2}{3} - \frac{2}{7}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cfrac%7B2%7D%7B3%7D%20-%20%5Cfrac%7B2%7D%7B7%7D)
- [Area] Subtract:
![\displaystyle A = \frac{8}{21}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cfrac%7B8%7D%7B21%7D)
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Area Under the Curve - Area of a Region (Integration)
Book: College Calculus 10e