1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sonbull [250]
3 years ago
5

5= 1 and 1/2 (X - 6 )​

Mathematics
1 answer:
Juliette [100K]3 years ago
4 0

Answer:

is the question right i dnt think so thats the right question

You might be interested in
Simplify:<br> 2/3 divided by 3 3/4
Nat2105 [25]

Answer:

\frac{8}{45}

Step-by-step explanation:

convert mixed number to improper fractions

3\frac{3}{4} =\frac{15}{4}

\frac{\frac{2}{3} }{\frac{15}{4} }

apply the fraction rule:

\frac{2 * 4}{3 * 15}

multiply the numbers

\frac{8}{45}

3 0
1 year ago
It is known that a certain function is an inverse proportion. Find the formula for this function if it is known that the functio
katrin2010 [14]

Answer:

y=\frac{24}{x}

Step-by-step explanation:

We have been given that a certain function is an inverse proportion. We are asked to find the formula for the function if it is known that the function is equal to 12 when the independent variable is equal to 2.  

We know that two inversely proportional quantities are in form y=\frac{k}{x}, where y is inversely proportional to x and k is constant of variation.

Upon substituting y=12 and x=2 in above equation, we will get:

12=\frac{k}{2}

Let us solve for constant of variation.

12\cdot 2=\frac{k}{2}\cdot 2

24=k

Now, we will substitute k=12 in inversely proportion equation as:

y=\frac{24}{x}

Therefore, the formula for the given scenario would be y=\frac{24}{x}.

3 0
3 years ago
4=(1/2)^× solve for x
cricket20 [7]
4=\left(\frac{1}{2}\right)^x\\&#10;2^2=2^{-x}\\&#10;x=-2&#10;
4 0
4 years ago
2. Find the general relation of the equation cos3A+cos5A=0
mars1129 [50]
<h2>Answer:</h2>

A=\frac{\pi}{8}+\frac{n\pi}{4}or\ A=\frac{\pi}{2}+n\pi

<h2>Step-by-step explanation:</h2>

<h3>Find angles</h3>

cos3A+cos5A=0

________________________________________________________

<h3>Transform the expression using the sum-to-product formula</h3>

2cos(\frac{3A+5A}{2})cos(\frac{3A-5A}{2})=0

________________________________________________________

<h3>Combine like terms</h3>

2cos(\frac{8A}{2})cos(\frac{3A-5A}{2})=0\\\\  2cos(\frac{8A}{2})cos(\frac{-2A}{2})=0

________________________________________________________

<h3>Divide both sides of the equation by the coefficient of variable</h3>

cos(\frac{8A}{2})cos(\frac{-2A}{2})=0

________________________________________________________

<h3>Apply zero product property that at least one factor is zero</h3>

cos(\frac{8A}{2})=0\ or\ cos(\frac{-2A}{2})=0

________________________________________________________

<h2>Cos (8A/2) = 0:</h2>

<h3>Cross out the common factor</h3>

cos\ 4A=0

________________________________________________________

<h3>Solve the trigonometric equation to find a particular solution</h3>

4A=\frac{\pi}{2}or\ 4A=\frac{3\pi}{2}

________________________________________________________

<h3>Solve the trigonometric equation to find a general solution</h3>

4A=\frac{\pi}{2}+2n\pi \ or\\ \\ 4A=\frac{3 \pi}{2}+2n \pi\\ \\A=\frac{\pi}{8}+\frac{n \pi}{4\\}

________________________________________________________

<h2>cos(-2A/2) = 0</h2>

<h3>Reduce the fraction</h3>

cos(-A)=0

________________________________________________________

<h3>Simplify the expression using the symmetry of trigonometric function</h3>

cosA=0

________________________________________________________

<h3>Solve the trigonometric equation to find a particular solution</h3>

A=\frac{\pi }{2}\ or\ A=\frac{3 \pi}{2}

________________________________________________________

<h3>Solve the trigonometric equation to find a general solution</h3>

A=\frac{\pi}{2}+2n\pi\ or\ A=\frac{3\pi}{2}+2n\pi,n\in\ Z

________________________________________________________

<h3>Find the union of solution sets</h3>

A=\frac{\pi}{2}+n\pi

________________________________________________________

<h2>A = π/8 + nπ/4 or A = π/2 + nπ, n ∈ Z</h2>

<h3>Find the union of solution sets</h3>

A=\frac{\pi}{8}+\frac{n\pi}{4}\ or\ A=\frac{\pi}{2}+n\pi ,n\in Z

<em>I hope this helps you</em>

<em>:)</em>

5 0
3 years ago
Solve in degrees. 0 &lt; θ &lt; 360<br> 1. tan θ = 3.5134
Temka [501]

Answer:

Therefore,

\theta=74.11\°\ or\ \theta=254.11\°

Step-by-step explanation:

Given:

0° < θ < 360°

tan θ = 3.5134

To Find:

θ in degrees = ?

Solution:

0° < θ < 360° .............Given

Means ' θ ' is between 0° and 360°

\tan \theta=3.5134 .............Given

Therefore,

\theta=\tan^{-1} (3.5134)

Also,

\tan (180+\theta)=\tan \theta

So  ' θ '  will have Two values for tan θ =3.5134

\therefore \theta=74.11\°\ or\ \theta=180+74.11=254.11\°

Therefore,

\theta=74.11\°\ or\ \theta=254.11\°

5 0
3 years ago
Other questions:
  • What is the approximate value of the function at x = 0?
    11·1 answer
  • Can someone please help me and explain?
    12·1 answer
  • Using the data: 2, 2, 3, 3, 3, 4, 5, 6, 6, 10
    14·2 answers
  • THIS IS ALL MY POINTS
    10·2 answers
  • True of false an isometry preserves orientation
    13·2 answers
  • HELP ASAP!!!!!!!!!!!!!!!!!!! PLEASE!!
    11·1 answer
  • Which one??? I need help. Be serious please
    7·2 answers
  • PLEASE HELPP MEE!!!! MATH!!! PLEASEEE HELP ME!!!!!
    12·1 answer
  • HELLPPP ASAP PLEASEEE!!!
    11·1 answer
  • THIS IS FOR THE SAME TEST IF YOU WANT TO HELP ILL GIVE 50 POINTS
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!