Acceleration = (0.2 x g) = 1.96m/sec^2.
<span>Accelerating force on 1kg. = (ma) = 1.96N. </span>
<span>1kg. has a weight (normal force) of 9.8N. </span>
<span>Coefficient µ = 1.96/9.8 = 0.2 minimum. </span>
<span>Coefficient is a ratio, so holds true for any value of mass to find accelerating force acting. </span>
<span>e.g. 75kg = (75 x g) = 735N. </span>
<span>Accelerating force = (735 x 0.2) = 147N</span>
Answer:
4.16m/s²
Explanation:
According to Newtons second law;

Fm is the moving force
is the coefficient of kinetic friction between the child and the slide
m is the mass
g is the acceleration due to gravity
a is the acceleration of the child
Substitute the given values and get the acceleration as shown;
35(9.8)sin27.5 - 0.415(35)(cos27.5) = 35a
158.38-12.88 = 35a
145.49 = 35a
a = 145.49/35
a = 4.16m/s²
Hence the acceleration of the body is 4.16m/s²
Answer with Explanation:
We are given that
Charge on alpha particle=q=2 e=
1 e=
Mass of alpha particle=m=
Potential difference,V=
Magnetic field,B=3.49 T
a.Speed of alpha particle=v=
By using the formula


b.Magnetic force,F
F=
c.Radius of circular path, r=

r=0.084 m
The power is 
Explanation:
First of all, we need to find the acceleration of the car, which is given by

where
v = 60 mph = 26.8 m/s is the final velocity
u = 0 is the initial velocity
t = 10.0 s is the time
Substituting,

Now we can find the mass of the car by using Newton's second law:

where
F = 5300 N is the force applied
m is the mass
is the acceleration
Solving for m,

Now we can use the work-energy theorem, which states that the work done is equal to the change in kinetic energy of the car, to find the work:

And substituting,

Finally, we can find the power output of the car:

where
W is the work
t = 10.0 s is the time elapsed
Substituting,

Learn more about power:
brainly.com/question/7956557
#LearnwithBrainly