Answer:
7,166 hrs =430 minutes
Explanation:
Since both train are on the same track, going one towards the other, the relative speed is the addition of both, then the time they need to meet, and consistently crash, is the time that (65mph + 55 mph)=120mph need to travel the total distance of 860 miles, of course in this case one part is traveled by the first train and the rest by the other. Then to find the time we use a three rule
1 h --->120mi
X ---->860mi, then X=(860 mi* 1h)/120 mi = 43/6 hrs= 7,16666 hrs, turning this into minutes need that we notice 1h=60min, then 43/6 hrs *60 min/hrs = 430 minutes.
Answer:
T= 5.18N
Explanation:
u = mass of chord / length of chord
u = 0.49/ 7.3
u = 0.067 kg/m
Velocity of sound waves (v) =length of chord / time taken for wave to travel
v = 7.3 / 0.83 = 8.795m/s
Tension is calculated below using the formula
T = v² * u
T = (8.795)² x 0.067
T= 5.18N
Answer:
No
Explanation:
Cause a monster truck don
You could use a magnetic generator or you could use hydraulic power
Complete question:
A 45-mH ideal inductor is connected in series with a 60-Ω resistor through an ideal 15-V DC power supply and an open switch. If the switch is closed at time t = 0 s, what is the current 7.0 ms later?
Answer:
The current in the circuit 7 ms later is 0.2499 A
Explanation:
Given;
Ideal inductor, L = 45-mH
Resistor, R = 60-Ω
Ideal voltage supply, V = 15-V
Initial current at t = 0 seconds:
I₀ = V/R
I₀ = 15/60 = 0.25 A
Time constant, is given as:
T = L/R
T = (45 x 10⁻³) / (60)
T = 7.5 x 10⁻⁴ s
Change in current with respect to time, is given as;

Current in the circuit after 7 ms later:
t = 7 ms = 7 x 10⁻³ s

Therefore, the current in the circuit 7 ms later is 0.2499 A