Answer:
The potential energy at point A is 17.1675 J
Explanation:
The capillary potential is the work expended to bring up a unit mass of liquid to a point in a capillary region from a level liquid surface. It is the capillary potential that facilitates the movement of moisture within soil capillaries
In meteorology it is used to describe the level of saturated soil above the water table
Potential energy is the energy inherent in a body by virtue of its position, therefore the potentials of both point A and B are
Point A, elevation = 75 cm capillary potential = -100 cm
Point B, elevation = 25 cm capillary potential = -200 cm
The total potential energy at point A is
Elevation above reference - capillary potential =75-(-100) = 175 cm
which gives per unit mass
PE = m × g × h = 1 kg × 9.81 m/s ² × 1.75 m = 17.1675 kg·m²/s² = 17.1675 J
Electromagnetic waves are used in everyday life. You are looking at your computer screen right now. The light that is coming off of the screen is visible light, a form of electromagnetic radiation. Electromagnetic waves are also used to send information. For example, AM or FM radios are radio waves that transfer sound information to your local radio.
When she starts out, he is (40x2.5)= 100 miles ahead of her.
She gains (65-40)= 25 miles on him every hour.
It takes her (100/25)= 4 hours to catch up to him.
Starting making jokes and rapping
Answer:
Given that
D= 4 mm
K = 160 W/m-K
h=h = 220 W/m²-K
ηf = 0.65
We know that

For circular fin


m = 37.08


By solving above equation we get
L= 36.18 mm
The effectiveness for circular fin given as


ε = 23.52