1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ber [7]
2 years ago
8

Show that the input and output work done by the pistons is the same during "Pascal's principle" derivation

Physics
2 answers:
JulijaS [17]2 years ago
6 0

Answer:

I dint no is the answer of the puatinfn

olasank [31]2 years ago
3 0

Answer:

so b=2.8×105pa

Explanation:

here is your answer Hope you will enjoy and mark me as brainlist

thank you

You might be interested in
What would you do if someone came up atta nowhere and stole your kneecaps, what do you do?
arsen [322]

Answer:

peat them with my dislocated legs

3 0
3 years ago
A ball rolls off the end of a horizontal table that is 4 meters off the ground. It is measured that the ball lands 3 meters away
ElenaW [278]

Answer:

The speed at which the ball rolled off the end of the table is 3.3 m/s

Explanation:

Hi there!

Please, see the attached figure for a graphical description of the problem. Notice that the origin of the frame of reference is located at the edge of the table.

The position vector of the ball can be calculated as follows:

r = (x0 + v0x · t, y0 + v0y · t + 1/2 · g · t²)

Where:

r = position vector.

x0 = initial horizontal position.

v0x = initial horizontal velocity.

t = time.

y0 = initial vertical position.

v0y = initial vertical velocity.

g = acceleration due to gravity.

When the ball reaches the ground, its position will be:

r final = (3, -4)

Then:

3 = x0 + v0x · t

-4 = y0 + v0y · t + 1/2 · g · t²

Since the origin of the frame of reference is located at the edge of the table, x0 and y0 = 0. v0y is also 0 ( see the initial velocity vector in the figure to elucidate why). Then:

3 m = v0x · t

-4 m = 1/2 · g · t²

We can solve for "t" in the equation of the y-component and use it in the equation of the x-component to obtain v0x:

-4 m = 1/2 · g · t²

-4 m = -1/2 · 9.8 m/s² · t²

8 m / 9.8 m/s² = t²

t = 0.9 s

Then:

3 m = v0x · 0.9s

3 m/ 0.9 s = v0x

v0x = 3.3 m/s

The speed at which the ball roll off the end of the table is 3.3 m/s

8 0
3 years ago
A loudspeaker produces a sound wave of frequency 50hz.
viktelen [127]
Hey mate
Here is your answer
Option A)
Explanation:
The larger the amplitude of the waves, the louder the sound. Pitch (frequency) – shown by the spacing of the waves displayed. The closer together the waves are, the higher the pitch of the sound.
Pls mark as brainliest
3 0
2 years ago
What is the force per unit area at this point acting normal to the surface with unit nor- Side View √√ mal vector n = (1/ 2)ex +
Mumz [18]

Complete Question:

Given \sigma = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right] at a point. What is the force per unit area at this point acting normal to the surface with\b n = (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z   ? Are there any shear stresses acting on this surface?

Answer:

Force per unit area, \sigma_n = 28 MPa

There are shear stresses acting on the surface since \tau \neq 0

Explanation:

\sigma = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right]

equation of the normal, \b n = (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z

\b n = \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right]

Traction vector on n, T_n = \sigma \b n

T_n =  \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right] \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right]

T_n = \left[\begin{array}{ccc}\frac{23}{\sqrt{2} }\\0\\\frac{27}{\sqrt{33} }\end{array}\right]

T_n = \frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z

To get the Force per unit area acting normal to the surface, find the dot product of the traction vector and the normal.

\sigma_n = T_n . \b n

\sigma \b n = (\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z) . ((1/ \sqrt{2} ) \b e_x + 0 \b  e_y +(1/ \sqrt{2}) \b e_z)\\\\\sigma \b n = 28 MPa

If the shear stress, \tau, is calculated and it is not equal to zero, this means there are shear stresses.

\tau = T_n  - \sigma_n \b n

\tau =  [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - 28( (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z)\\\\\tau =  [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - [ (28/ \sqrt{2} ) \b e_x + (28/ \sqrt{2}) \b e_z]\\\\\tau =  \frac{-5}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{5}{\sqrt{2} } \b e_z

\tau = \sqrt{(-5/\sqrt{2})^2  + (27/\sqrt{2})^2 + (5/\sqrt{2})^2} \\\\ \tau = 19.74 MPa

Since \tau \neq 0, there are shear stresses acting on the surface.

3 0
3 years ago
When light generated by a lamp in a light microscope passes into a lens, the speed of the light _______ because the glass lens h
Alina [70]

Answer:

the answer is slows and greater

Hopes it helps!

6 0
3 years ago
Other questions:
  • Which two statements are true about energy transformations?
    5·1 answer
  • Newton's universal law of gravitation says that every object exerts a force on another object. The shuttle has a gravitational f
    9·1 answer
  • What would happen if the earth’s mantle was completely solid? Why do you think so?
    15·1 answer
  • In a particular machine, there are 2 gears that interlock; One gear is larger in circumference than the other. The manufacturer
    8·1 answer
  • If light enters your eye but does not properly form an image on your retina, which would you expect to happen?
    6·2 answers
  • A sound wave in a steel rail has a frequency of 620 hz and a wavelength of 10.5m. What is the speed of sound in steel?
    8·1 answer
  • Help me please!!!!!!!!!!!!!/ Science
    7·1 answer
  • If a stereo has a dial that changes the volume of the sounds the stereo makes, what is the dial doing? a. changing the number of
    9·2 answers
  • __________________ have almost no mass. A.protons B.neutrons C.electrons D.atoms
    7·1 answer
  • Two resistors R1 = 3 Ω and R2 = 6 Ω are connected in parallel. What is the net resistance in the circuit?​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!