Well in this
case, silver
nitrate is reduced:
Ag<span>+ </span><span>+ </span>e<span>− </span>→ Ag(s) ↓
Meanwhile, the aluminum
is oxidized forming a positive ion:
Al(s<span>) → </span>Al<span>3+ </span><span>+ 3</span>e−
To get the
overall reaction, we add the half
equations so that the electrons are eliminated:
Al(s<span>) + 3</span>Ag<span>+ </span><span>→ </span>Al<span>3+ </span><span>+ 3</span>Ag(s)
And similarly:
Al(s<span>) + 3</span>AgNO3(aq<span>) → </span>Al(NO3)3(aq<span>) + 3</span>Ag(s<span>)</span>
<h3><u>Answer;</u></h3>
Dipole-dipole and hydrogen bonding
<h3><u>Explanation;</u></h3>
- <em><u>A solution of water and ethanol contains the dipole-dipole forces and hydrogen bonds as the intermolecular forces between molecules.</u></em>
- <em><u>Hydrogen bonding is a type of interactions between molecules that occurs when a partially negative atom such as oxygen end of one of the molecules is attracted to a partially positive hydrogen end of another molecule.</u></em>
- <em><u>Dipole-dipole forces</u></em> results from the unsymmetrical distribution of electrons, thus the polarity does not balance, thus resulting to a dipole attraction between molecules.
It is True because in the periodic table of elements, there are seven horizontal rows of elements called periods. The vertical columns of elements are called groups, or families.
<h3>
Answer:</h3>
3.3 × 10²³ molecules Cu(NO₃)₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
0.55 mol Cu(NO₃)₂
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
3.3121 × 10²³ molecules Cu(NO₃)₂ ≈ 3.3 × 10²³ molecules Cu(NO₃)₂