Answer:
Adding sodium or potassium hydroxide in amounts sufficient to convert all the H2SO4 into Na2SO4 would approximately neutralize the solution. The error would be the result of the imbalance between the basicity of the hydroxide and the acidity of the bisulfate (HSO4) anion. An adjustment in concentration would have to be made to achieve an accurate approximate pH of 7. But then you didn’t ask how much we would need to add.
Explanation:
<em><u>please</u></em><em><u> </u></em><em><u>mark</u></em><em><u> </u></em><em><u>as</u></em><em><u> </u></em><em><u>brainliest</u></em><em><u> </u></em>
In a mechanical cycle, mechanical energy (mostly the the rotation) is used to get the desired result. The form of energy remains the same.
<span>In a thermodynamic cycle heat is converted to mechanical energy. That is to say there is conversion of energy.</span>
B. They are the same force. Each body acts on the other. The moon and the earth, and the apple and the earth.
OP already did it - CONGRATS!!
here are the steps 2 get the same ans:
(NH4)2 CO3 has 2x N, 8x H, 1x C and 3x O per molecule
so its molecular mass = 2x14 + 8x1 + 1x12 + 3x16
=28+8+12+48
=96g
of that 96g, 8x1=8g is due to Hydrogen
so by ratio n proportion, 1.00g will have 1x8/96 = 1/12g = 0.083g of H
<span>361.4 pm is the length of the edge of the unit cell.
First, let's calculate the average volume each atom is taking. Start with calculating how many moles of copper we have in a cubic centimeter by looking up the atomic weight.
Atomic weight copper = 63.546
Now divide the mass by the atomic weight, getting
8.94 g / 63.546 g/mol = 0.140685488 mol
And multiply by Avogadro's number to get the number of atoms:
0.140685488 * 6.022140857x10^23 = 8.472278233x10^22
Now examine the face-centered cubic unit cell to see how many atoms worth of space it consumes. There is 1 atom at each of the 8 corners and each of those atoms is shared between 8 unit cells for for a space consumption of 8/8 = 1 atom. And there are 6 faces, each with an atom in the center, each of which is shared between 2 unit cells for a space consumption of 6/2 = 3 atoms. So each unit cell consumes as much space as 4 atoms. Let's divide the number of atoms in that cubic centimeter by 4 to determine the number of unit cells in that volume.
8.472278233x10^22 / 4 = 2.118069558x10^22
Now calculate the volume each unit cell occupies.
1 cm^3 / 2.118069558x10^22 = 4.721280262x10^-23 cm^3
Let's get the cube root to get the length of an edge.
(4.721280262x10^-23 cm^3)^(1/3) = 3.61426x10^-08 cm
Now let's convert from cm to pm.
3.61426x10^-08 cm / 100 cm/m * 1x10^12 pm/m = 361.4 pm
Doing an independent search for the Crystallographic Features of Copper, I see that the Lattice Parameter for copper at at 293 K is 3.6147 x 10^-10 m which is in very close agreement with the calculated amount above. And since metals expand and contract with heat and cold, I assume the slight difference in values is due to the density figure given being determined at a temperature lower than 293 K.</span>