Answer:
[C₆H₅COO⁻][H₃O⁺]/[C₆H₅COOH] = Ka
Explanation:
The reaction of dissociation of the benzoic acid in water is given by the following equation:
C₆H₅-COOH + H₂O ⇄ C₆H₅-COO⁻ + H₃O⁺ (1)
The dissociation constant of an acid is the measure of the strength of an acid:
HA ⇄ A⁻ + H⁺ (2)
(3)
<em>Where the dissociation constant of the acid (Ka) is equal to the ratio of the concentration of the dissociated forms of the acid, [A⁻][H⁺], and the concentration of the acid, [HA]. </em>
So, starting from the equations (2) and (3), the constant equation for the dissociation reaction of benzoic acid in water, of the equation (1), is:
![K_{a} = \frac{[C_{6}H_{5}COO^{-}][H_{3}O^{+}]}{[C_{6}H_{5}COOH]}](https://tex.z-dn.net/?f=%20K_%7Ba%7D%20%3D%20%5Cfrac%7B%5BC_%7B6%7DH_%7B5%7DCOO%5E%7B-%7D%5D%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%7B%5BC_%7B6%7DH_%7B5%7DCOOH%5D%7D%20)
I hope it helps you!
To convert the given value to the desired one, use the proper unit conversions and dimensional analysis. Use the following conversion for the first set.
1 g = 100 cg
1 L = 1000 mL
Using the concept presented above,
V = (59800 cg/L)(1 g/100 cg)1 L/1000 mL)
V = 0.598 g/mL
The metalloids are Boron, Silicon, Geranium, etc and are found to the right of the metals and the left of the nonmetals. Since that is not an option, the best choice would be: The metalloids are located below nonmetals and above metals within a group.
Answer:
(a) The lewis structure for methylisocyanate is in the attached.
(b) The carbonyl carbon have an sp² hybridization
(c) The nitrogen have an sp² hybridization?
Explanation:
(a) The lewis structure for methylisocyanate has the nitrogen with one lone pair and the oxygen with two lone pairs.
(b) The carbonyl carbon form double bond with the oxygen causing to form three hybrid orbitals sp².
The Nitrogen also forms a double bond with the carbon having an sp² hybridization too.