6 2/3 = 20/3 = 60/9
4 4/9 = 40/9
60/9 - 40/9 = 20/9 = 2 2/9
Answer:
Both Scott and Tara have responded correctly.
Step-by-step explanation:
we know that
The area of a trapezoid is equal to
A=(1/2)[b1+b2]h
we have
b1=16 cm
b2=24 cm
h=8 cm -----> <em>Note</em> The height is 8 cm instead of 18 cm
substitute
A=(1/2)[16+24](8)
A=160 cm²
<em>Verify Scott 's work</em>
<em>Note</em> Scott wrote A = (1/2)(24 + 16)(8) instead of A = 2(24 + 16)(8)
Remember that the Commutative Property establishes "The order of the addends does not alter its result"
so
(24+16)=(16+24)
A = (1/2)(24 + 16)(8)=160 cm²
<em>Verify Tara's work</em>
<em>Note</em> Tara wrote A = (1/2)(16+24)(8) instead of A = (16 + 24)(8)
A = (1/2)(16+24)(8)=160 cm²
Answer:
The sum of the roots is 0.5
Step-by-step explanation:
<u><em>The correct question is</em></u>
What is the sum of the roots of 20x^2-10x-30
we know that
In a quadratic equation of the form
The sum of the roots is equal to
in this problem we have
so

substitute
<u><em>Verify</em></u>
Find the roots of the quadratic equation
The formula to solve a quadratic equation is equal to


substitute





The roots are x=-1 and x=1.5
The sum of the roots are
----> is ok