Try this explanation:
1. if to re-write the given function as:

then it is possible to define its range:
2)
![\lim_{x \to+ \infty}[1- \frac{C}{e^x+C}]=1; \\ \lim_{x \to- \infty}[1- \frac{C}{e^x+C}]=0](https://tex.z-dn.net/?f=%20%5Clim_%7Bx%20%5Cto%2B%20%5Cinfty%7D%5B1-%20%5Cfrac%7BC%7D%7Be%5Ex%2BC%7D%5D%3D1%3B%20%20%5C%5C%20%5Clim_%7Bx%20%5Cto-%20%5Cinfty%7D%5B1-%20%5Cfrac%7BC%7D%7Be%5Ex%2BC%7D%5D%3D0)
answer: (0;1)
Is it 2 different questions or just one?
G( - 3 ) = 8 * ( - 3 ) + 2 = -24 + 3 = - 21 ;
( fog )(-3) = f( g(-3) ) = f( - 21 ) = 6 * ( -21 ) + 7 = - 126 + 7 = - 119
It is true that the surface area of the sphere and the lateral area of the cylinder are equal. The answer is True.