Circumference: 2 * pi * r
pi = 3.14, r = 4
2 * 3.14 * 4 = 25.12
Circumference: 25.12 cm
Area = pi * r^2
pi = 3.14, r = 4
3.14 * 4^2 = 50.24
Area: 50.24 cm^2
To solve this problem we must know that when any two lines intersect , a pair of opposite angles from the figure Will be equal
so that means that

we can subtract twenty from each side


now we can subtract like terms

so we can get the final answer as
Answer:
y= 0,-2
Hope this helps!
Answer:
1716 ;
700 ;
1715 ;
658 ;
1254 ;
792
Step-by-step explanation:
Given that :
Number of members (n) = 13
a. How many ways can a group of seven be chosen to work on a project?
13C7:
Recall :
nCr = n! ÷ (n-r)! r!
13C7 = 13! ÷ (13 - 7)!7!
= 13! ÷ 6! 7!
(13*12*11*10*9*8*7!) ÷ 7! (6*5*4*3*2*1)
1235520 / 720
= 1716
b. Suppose seven team members are women and six are men.
Men = 6 ; women = 7
(i) How many groups of seven can be chosen that contain four women and three men?
(7C4) * (6C3)
Using calculator :
7C4 = 35
6C3 = 20
(35 * 20) = 700
(ii) How many groups of seven can be chosen that contain at least one man?
13C7 - 7C7
7C7 = only women
13C7 = 1716
7C7 = 1
1716 - 1 = 1715
(iii) How many groups of seven can be chosen that contain at most three women?
(6C4 * 7C3) + (6C5 * 7C2) + (6C6 * 7C1)
Using calculator :
(15 * 35) + (6 * 21) + (1 * 7)
525 + 126 + 7
= 658
c. Suppose two team members refuse to work together on projects. How many groups of seven can be chosen to work on a project?
(First in second out) + (second in first out) + (both out)
13 - 2 = 11
11C6 + 11C6 + 11C7
Using calculator :
462 + 462 + 330
= 1254
d. Suppose two team members insist on either working together or not at all on projects. How many groups of seven can be chosen to work on a project?
Number of ways with both in the group = 11C5
Number of ways with both out of the group = 11C7
11C5 + 11C7
462 + 330
= 792
Answer:
1st one, x=-1
2nd on, y=2
Step-by-step explanation: