We can use the equation E = k | Q | r 2 E = k | Q | r2 to find the magnitude of the electric field. The direction of the electric field is determined by the sign of the charge,
<h3>What is electric and magnetic field ?</h3>
With the use of electricity and other types of artificial and natural illumination, invisible energy fields known as electric and magnetic fields (EMFs) and radiation are created.
- While the magnetic field is discernible by the force it exerts on other magnetic particles and moving electric charges, the electric field is actually the force per unit charge experienced by a non-moving point charge at any given location inside the field.
Learn more about Electromagnetic field here:
brainly.com/question/14372859
#SPJ4
By definition, acceleration is the change in velocity per change of time. As time passes by, the time increases in value. So, when the acceleration is decreasing while the time is increasing, then that means that the change of velocity is also decreasing with time. So, optimally, the initial velocity and the velocity at any time are very relatively close to each other,
Efficiency = useful energy out / total energy in x 100
= 100/400 x 100
=0.25 x 100
= 25%
25%
Answer:
D
Explanation:
For this kind of problem, forces add. F = F1 + F2
F1 = 6 N
F2 = 10 N
F = 6N + 10N
F = 16N
Req = 30.0Ω.
When two or more resistors are in series, the intensity of current that passes through each of them is the same. Therefore, if you notice, you can observe that the three previous series resistors are equivalent to a single resistance whose value is the sum of each one.
Req = R1 + R2 + R3 = 10.0Ω + 10.0Ω + 10.0Ω = 30.0Ω