At the same speed because it will slow down as it approaches the peak then speed up as it goes down again
it will be going 15m/s when it gets to the same height if we neglect air resistance and the object doesn't hit something
Are you referring to try to get into a college? if you are here is a basic outlay...
Your Street Address
City, State, Zip Code
Date
Name of Person, Title
Company/Organization
Street Address
City, State, Zip Code
Dear Mr./Ms./Dr. :
Introduction: State your reason for writing. Name the specific position or type of work for which you are applying. (Mention how you heard about the opening, if appropriate.)
Body: Explain why you are interested in working for that employer, or in that field of work, and what your qualifications are. Highlight two to three achievements that relate to the position and field. Refer the reader to the enclosed resume, application, and/or portfolio.
Closing: Thank the reader for his or her time and consideration. Indicate your desire for an interview and provide your contact information. If the employer is willing to accept phone calls, state that you will call to discuss the possibility of scheduling an interview.
Sincerely,
Your Name
<span>Enclosure / Attachment
</span>
That seems like a statement more than a question. Where's the question?
Answer:
wish I could help
Explanation:
I been rereading this and I can't solve it lemme go ask people in ma house real quick
Answer:
Δ
= 84 Ω,
= (40 ± 8) 10¹ Ω
Explanation:
The formula for parallel equivalent resistance is
1 /
= ∑ 1 / Ri
In our case we use a resistance of each
R₁ = 500 ± 50 Ω
R₂ = 2000 ± 5%
This percentage equals
0.05 = ΔR₂ / R₂
ΔR₂ = 0.05 R₂
ΔR₂ = 0.05 2000 = 100 Ω
We write the resistance
R₂ = 2000 ± 100 Ω
We apply the initial formula
1 /
= 1 / R₁ + 1 / R₂
1 /
= 1/500 + 1/2000 = 0.0025
= 400 Ω
Let's look for the error (uncertainly) of Re
= R₁R₂ / (R₁ + R₂)
R’= R₁ + R₂
= R₁R₂ / R’
Let's look for the uncertainty of this equation
Δ
/
= ΔR₁ / R₁ + ΔR₂ / R₂ + ΔR’/ R’
The uncertainty of a sum is
ΔR’= ΔR₁ + ΔR₂
We substitute the values
Δ
/ 400 = 50/500 + 100/2000 + (50 +100) / (500 + 2000)
Δ
/ 400 = 0.1 + 0.05 + 0.06
Δ
= 0.21 400
Δ
= 84 Ω
Let's write the resistance value with the correct significant figures
= (40 ± 8) 10¹ Ω