Yes they can. Uh-huh. Indubitably. That's right, Vanessa. It's true.
A better way to say it might be:
Electromagnetic radiation can behave like waves AND like particles.
Answer:
625000 N/ m
Explanation:
m= 20 kg
v= 30 m/s
x= 12 cm
k = ?
Here when the mass when hits at spring its speed is
Vi= 30 m/s
Finally it comes to rest after compressing for 12 cm
i-e Vf = 0 m/s
Distance= S= 12 cm = 0.12 m
using
2aS= Vf2 - Vi2
==> 2a ×0.12 = o- 30 × 30
==> a = 900 ÷ 0.24 = 3750 m/sec2
Now we know;
F = ma
F= -Kx
==> ma= -kx
==> 20 × 3750 = -K × 0.12
==> k = 625000 N/ m
The first one, as the mass is higher so it accelerates more
Circumference C=2πr
<span>C=2π(1.5x10^8)=9.42x10^8 </span>
<span>In 365 Days there are 8760hr </span>
<span>V=distance/time </span>
<span>V=(9.42x10^8)/8760=107534.2km/hr </span>