Chemotaxis is movement of a motile cell or organism, or part of one, in a direction corresponding to a gradient of increasing or decreasing concentration of a particular substance.
Complete question:
Receptors trigger one of two effector pathways resulting in changes in neuronal activity. These changes will, ultimately, effect gene expression. Which effector pathway is characterized by ion flux through transmitter-activated channels resulting in an altered membrane potential and neuronal activity?
A. Slow effector pathways
B. Modulated effector pathways
C. Rapid effector pathways
D. NMDA glutamate receptor pathways
Answer:
D. NMDA glutamate receptor pathways
Explanation:
The NMDA glutamatergic receptor is a cationic channel receptor modulated by a ligand that allows the transport of Na+, K+, and Ca2+. Under certain situations, it exhibits particular permeability to Ca2+. The receptor has different regions that are susceptible to modulation by endogenous and exogenous agents. The receptor can be found at most excitatory synapses, where it responds to the neurotransmitter glutamate. During synapsis, the presynaptic membrane releases L-glutamate, which is received by NMDA glutamatergic receptor. The receptor plays a regulatory role because activates signaling cascades that depend on calcium.
These receptors are involved in normal synaptic transmission, in a diverse physiological phenomenon, and might be responsible for neurodegenerative processes.
Answer: Gradualism (C)
Hope this helps
Answer:
The DNA mutation causes a change in the amino acid sequence for hemoglobin, which causes a change in the shape of red blood cells.
Explanation:
Sickle cell anemia is one of a group of disorders known as sickle cell disease. Sickle cell anemia is an inherited red blood cell disorder in which there aren't enough healthy red blood cells to carry oxygen throughout your body.
Normally, the flexible, round red blood cells move easily through blood vessels. In sickle cell anemia, the red blood are shaped like sickles or crescent moons. These rigid, sticky cells can get stuck in small blood vessels, which can slow or block blood flow and oxygen to parts of the body.
Sickle cell anemia is caused by a mutation in the gene that tells your body to make the iron-rich compound that makes blood red and enables red blood cells to carry oxygen from your lungs throughout your body (hemoglobin). In sickle cell anemia, the abnormal hemoglobin causes red blood cells to become rigid, sticky and misshapen.
The sickle cell mutation reflects a single change in the amino acid building blocks of the oxygen-transport protein, hemoglobin. This protein, which is the component that gives red cells their color, has two subunits. The alpha subunit is normal in people with sickle cell disease. The beta subunit has the amino acid valine at position 6 instead of the glutamic acid that is normally present. The alteration is the basis of all the problems that occur in people with sickle cell disease.
Answer:
You Can Now Turn Your Pet Into a Diamond After They Pass Away. Called memorial diamonds, these blue-tinged stones are made from the ashes of your deceased furry friend and can be customized in a variety of cuts and sizes.
Explanation: