1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DanielleElmas [232]
3 years ago
7

If you double the radius of the earth and keep the mass of the earth the same, the acceleration of gravity on the surface of the

earth will be approximately ...
Physics
1 answer:
Ulleksa [173]3 years ago
5 0
Even though the mass of the earth stays the same, the force gravity has on us will double because there is less space in the atmosphere for the gravity to pull anything in towards its center. Let me know if I'm correct!
You might be interested in
Many scientists accept a theory about the origin of the universe, called the big bang theory. describe at least one piece of sci
alexandr402 [8]
Red shift is one piece of observational evidence which supports the big bang theory. The fact that galaxies are moving away from us means that the universe was once much smaller, supporting the big bang theory which states that all the matter in the universe once occupied a single point with infinite density.
3 0
2 years ago
The height of a projectile t seconds after it is launched straight up in the air is given by f (t )equals negative 16 t squared
velikii [3]

Answer:

\displaystyle a(5)=-32

Explanation:

<u>Instant Acceleration</u>

The kinetic magnitudes are usually related as scalar or vector equations. By doing so, we are assuming the acceleration is constant over time. But when the acceleration is variable, the relations are in the form of calculus equations, specifically using derivatives and/or integrals.

Let f(t) be the distance traveled by an object as a function of the time t. The instant speed v(t) is defined as:

\displaystyle v(t)=\frac{df}{dt}

And the acceleration is

\displaystyle a(t)=\frac{dv}{dt}

Or equivalently

\displaystyle a(t)=\frac{d^2f}{d^2t}

The given height of a projectile is

f(t)=-16t^2 +238t+3

Let's compute the speed

\displaystyle v(t)=-32t+238

And the acceleration

\displaystyle a(t)=-32

It's a constant value regardless of the time t, thus

\boxed{\displaystyle a(5)=-32}

3 0
3 years ago
Please help, I do not understand
Anettt [7]
I think the key here is to be exquisitely careful at all times, and
any time we make any move, keep our units with it.

We're given two angular speeds, and we need to solve for a time.

Outer (slower) planet:
Angular speed =  ω  rad/sec
Time per unit angle =  (1/ω)  sec/rad
Angle per revolution = 2π rad
Time per revolution = (1/ω sec/rad) · (2π rad) = 2π/ω seconds .

Inner (faster) planet:
Angular speed =  2ω  rad/sec
Time per unit angle =  (1/2ω)  sec/rad
Angle per revolution = 2π rad
Time per revolution = (1/2ω sec/rad) · (2π rad) = 2π/2ω sec = π/ω seconds.

So far so good.  We have the outer planet taking 2π/ω seconds for one
complete revolution, and the inner planet doing it in only π/ω seconds ...
half the time for double the angular speed.  Perfect !

At this point, I know what I'm thinking, but it's hard to explain.
I'm pretty sure that the planets are in line on the same side whenever the
total elapsed time is something like a common multiple of their periods.
What I mean is:

They're in line, SOMEwhere on the circles, when

     (a fraction of one orbit) = (the same fraction of the other orbit)    
AND
     the total elapsed time is a common multiple of their periods.

Wait !  Ignore all of that.  I'm doing a good job of confusing myself, and
probably you too.  It may be simpler than that.  (I hope so.)  Throw away
those last few paragraphs.

The planets are in line again as soon as the faster one has 'lapped'
the slower one ... gone around one more time.  
So, however many of the longer period have passed, ONE MORE
of the shorter period have passed.  We're just looking for the Least
Common Multiple of the two periods.

      K (2π/ω seconds)  =  (K+1) (π/ω seconds)

                     2Kπ/ω   =    Kπ/ω + π/ω

Subtract  Kπ/ω :    Kπ/ω = π/ω

Multiply by  ω/π :      K  =  1

(Now I have a feeling that I have just finished re-inventing the wheel.)

And there we have it:

     In the time it takes the slower planet to revolve once,
     the faster planet revolves twice, and catches up with it.
    
     It will be  2π/ω  seconds before the planets line up again.
    
     When they do, they are again in the same position as shown
     in the drawing.

To describe it another way . . . 

     When Kanye has completed its first revolution ...

     Bieber has made it halfway around.

     Bieber is crawling the rest of the way to the starting point while ...

     Kanye is doing another complete revolution.

     Kanye laps Bieber just as they both reach the starting point ...

     Bieber for the first time, Kanye for the second time.


You're welcome.  The generous bounty of 5 points is very gracious,
and is appreciated.  The warm cloudy water and green breadcrust
are also delicious.
5 0
2 years ago
A student drops a ball from the top of a tall building; it takes 2.9 s for the ball to reach the ground.
AlexFokin [52]

<h2><u>We have</u>,</h2>

  • Initial velocity (u) = 0 m/s
  • Time taken (t) = 2.9s
  • Acceleration due to gravity (g) = + 10 m/s² [Down]

<h2><u>To calculate</u>,</h2>

  • Final velocity (v)
  • Height (h)

<h2><u>Solution</u><u>,</u></h2>

→ v = u + gt

→ v = 0 + 10(2.9)

→ v = 29 m/s \qquad … ( Ans )

And,

→ h = ut + ½gt²

→ h = 0(2.9) + ½ × 10 × (2.9)²

→ h = 5 × 8.41

→ h = 42.05 m \qquad … ( Ans )

4 0
2 years ago
Which principle states that the net electrical force on a specific charge is equal to the sum of the vector components of the ch
Softa [21]

Answer:

C. The superposition principle

Explanation:

:)

7 0
3 years ago
Read 2 more answers
Other questions:
  • A car travelling at 40 m/s comes to a halt in 8 seconds. What is the car’s acceleration and how far does it travel while it is s
    11·1 answer
  • A water balloon was dropped from a high window and struck its target 1.1 seconds later. If the balloon left the person's hand at
    9·1 answer
  • Describe the role of minerals in the formation of rocks
    8·1 answer
  • What objects can be seen from earth because they producde there own light? 
    14·1 answer
  • A spotlight on the ground shines on a wall 15 meters away. A man 1.8 meters tall walks away from the spotlight toward the buildi
    6·1 answer
  • What is drag? In what situations might it act on the force of gravity?
    9·2 answers
  • Where is most of the energy from incoming waves focused?
    13·1 answer
  • A tire rotates 50 times in 2.5 seconds what is its period?​
    15·1 answer
  • A body is moving with a uniform acceleration of 2m/s² what does it mean?​
    15·1 answer
  • A merry-go-round has a small box placed on it at a distance R' from its axis of
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!