Answer:
my c-ock and balls be rotating im gunna be hxrny all day every day im gunna f-u-ck u and r-ape ur family girls should go back to the kitchen and hope not to be beat by their husband uh yea mhm girls desurve to be r-aped f-u-ck buck suck c-u-ck
Explanation:
Answer:
The tangential speed of the tack is 8.19 m/s.
Explanation:
The wheel rotates 3.37 times a second that means wheel complete 3.37 revolutions in a second. Therefore, the angular speed ω of the wheel is given as follows:

Use the relation of angular speed with tangential speed to find the tangential speed of the tack.
The tangential speed v of the tack is given by following expression
v = ω r
Here, r is the distance to the tack from axis of rotation.
Substitute 21.174 rad/s for ω, and 0.387 m for r in the above equation to solve for v.
v = 21.174 × 0.387
v = 8.19m/s
Thus, The tangential speed of the tack is 8.19 m/s.
Answer:
a. The station is rotating at 
b. the rotation needed is 
Explanation:
We know that the centripetal acceleration is

where
is the rotational speed and r is the radius. As the centripetal acceleration is feel like an centrifugal acceleration in the rotating frame of reference (be careful, as the rotating frame of reference is <u>NOT INERTIAL,</u> the centrifugal force is a fictitious force, the real force is the centripetal).
<h3>a. </h3>
The rotational speed is :




Knowing that there are
in a revolution and 60 seconds in a minute.


<h3>b. </h3>
The rotational speed needed is :




Knowing that there are
in a revolution and 60 seconds in a minute.


Its larger and if u where wondering to positive ions are smaller