1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Olegator [25]
2 years ago
12

A sector with an area of \goldE{48\pi,\text{cm}^2}48πcm 2 start color #a75a05, 48, pi, start text, c, m, end text, squared, end

color #a75a05 has a radius of \maroonD{16,\text{cm}}16cmstart color #ca337c, 16, start text, c, m, end text, end color #ca337c. What is the central angle measure of the sector in radians? Choose 1 answer: Choose 1 answer:
Mathematics
1 answer:
erik [133]2 years ago
7 0

Answer:

3/8 π radians

Step-by-step explanation:

The Area of a sector when then central angle is in radians = 1/2r² θ

Where

θ = central angle = ?

r = 16 cm

Area of the sector = 48πcm²

Hence

Central angle = Area of a sector ÷ (1/2r²)

= 48πcm² ÷ (1/2 × 16²)

= 48πcm² ÷ 128

Central angle = 3/8π radians

Therefore, Central angle = 3/8π radians

You might be interested in
Simplify 4^2 * 4^8= A.)4^16 B.)4^10 C.)16^16 D.)16^10 please help me i need this asap.
SVEN [57.7K]

Answer:

4^{10}

Step-by-step explanation:

Complete the exponents first.

4*4=16

4*4*4*4*4*4*4*4=65536

65536 *16= 1048576

The answer is 4^{10}

You can also find this if you add the exponents.

6 0
2 years ago
Simplify the expression.
Marizza181 [45]
\bf \textit{Cofunction Identities}
\\ \quad \\
sin\left(\frac{\pi}{2}-{{ \theta}}\right)=cos({{ \theta}})\qquad 
\boxed{cos\left(\frac{\pi}{2}-{{ \theta}}\right)=sin({{ \theta}})}
\\ \quad \\ \quad \\
tan\left(\frac{\pi}{2}-{{ \theta}}\right)=cot({{ \theta}})\qquad 
cot\left(\frac{\pi}{2}-{{ \theta}}\right)=tan({{ \theta}})
\\ \quad \\ \quad \\
sec\left(\frac{\pi}{2}-{{ \theta}}\right)=csc({{ \theta}})\qquad 
csc\left(\frac{\pi}{2}-{{ \theta}}\right)=sec({{ \theta}})

\bf \\\\
-------------------------------\\\\
sin^2(\theta)+cos^2(\theta)=1\implies cos^2(\theta)=1-sin^2(\theta )
\\\\\\
\boxed{cos(\theta )=\sqrt{1-sin^2(\theta )}}

\bf \\\\
-------------------------------\\\\
\cfrac{cos^2\left(\frac{\pi }{2}-x  \right)}{\sqrt{1-sin^2(x)}}\implies \cfrac{\left[ cos\left(\frac{\pi }{2}-x    \right)\right]^2}{cos(x)}\implies \cfrac{[sin(x)]^2}{cos(x)}\implies \cfrac{sin(x)sin(x)}{cos(x)}
\\\\\\
sin(x)\cdot \cfrac{sin(x)}{cos(x)}\implies sin(x)tan(x)
6 0
3 years ago
18- 8x = 8 + 3(1 - 3x)<br> Work shown please!
AleksAgata [21]

Answer

7 = -x

Step-by-step explanation:

18- 8x = 8 + 3(1 - 3x)

18- 8x = 8 +3-9x

18- 8x = 11 - 9x

7- 8x = -9x

7 = -x

5 0
3 years ago
Read 2 more answers
Write a quadratic function that will reflect over x-axis and shift down 8
tino4ka555 [31]

Answer:

y=-x^2-8

Step-by-step explanation:

Tell me if you need explanation

8 0
2 years ago
Integrate e^x(sin(x) cos(x))
Karo-lina-s [1.5K]
I=\int e^x(\sin(x)\cos(x))dx=\int e^x(\frac{1}{2}\sin(2x))dx=\frac{1}{2}\int e^x\sin(2x)dx

\text{If }u=\sin(2x)\to du=2\cos(2x)dx~\text{and}~dv=e^xdx\to v=e^x:\\\\&#10;\text{Using }\int u\,dv=uv-\int v\,du:\\\\&#10;I=\frac{1}{2}(e^x\sin(2x)-\int e^x(2\cos(2x))dx)\\\\&#10;2I=e^x\sin(2x)-2\underbrace{\int e^x\cos(2x)dx}_{I_2}

Looking for I_2:

\text{If}~u=\cos(2x)\to du=-2\sin(2x)dx~\text{and}~dv=e^xdx\to v=e^x:\\\\&#10;I_2=e^x\cos(2x)-\int e^x(-2\sin(2x))dx\\\\ I_2=e^x\cos(2x)+2\int e^x(\sin(2x))dx\\\\  I_2=e^x\cos(2x)+2\int e^x(2\sin(x)\cos(x))dx\\\\ I_2=e^x\cos(2x)+4\int e^x(\sin(x)\cos(x))dx=e^x\cos(2x)+4I

Replacing:

2I=e^x\sin(2x)-2I_2\iff\\\\2I=e^x\sin(2x)-2(e^x\cos(2x)+4I)\iff\\\\&#10;2I=e^x\sin(2x)-2e^x\cos(2x)-8I\iff\\\\&#10;10I=e^x\sin(2x)-2e^x\cos(2x)\iff\\\\&#10;I=\dfrac{e^x}{10}(\sin(2x)-2\cos(2x))\\\\&#10;\boxed{\int e^x(\sin(x)\cos(x))dx=\dfrac{e^x}{10}(\sin(2x)-2\cos(2x))+C}
6 0
3 years ago
Other questions:
  • What is 1 and 3/4 divided by 4/5​
    5·1 answer
  • Help please! simplify this problem
    9·1 answer
  • What’s the linear equation for (1,21)(2,33)(3,45)(4,57)
    9·1 answer
  • Can someone please help me I really need help please help me
    11·1 answer
  • HELP! please answer the question correctly :)
    15·2 answers
  • Find the area of the cross section that is parallel to the bases.
    5·1 answer
  • Help! Please help!,!
    7·1 answer
  • 1+1*1+1+1*1+1+1*1+1+1*1+1+1*1+1+1*1+1+1*1+1+1*1+1+1*1+1+1*1+1+1*1+1+1*1+1+1*1+1+1*1+1+1*1+1+1*1+(Just for fun)
    13·2 answers
  • Will mark brainliest
    8·1 answer
  • Which of the following equations can be used to find the length of EF in the
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!