Rubidium or strontium have larger a larger atomic radius since the further left on the periodic table you go, the larger the sizes of the atoms are. This trend can be explained through effective nuclear charge which explains how the further left and down you go, the less the atoms nucleus is able to pull in the electrons around it.<span />
Sand dunes would be created due to the mixture falling on each other
x
First, we must know what happens in the precipitation reaction. This type of reaction is a double replacement reactions. It is consists of two reactant compounds which interchange cations and anions to form two products. One of the products is an insoluble solid called a precipitate. For the precipitation of CaCO₃, there are two consecutive reactions involved:
1. Slaking of quicklime, CaO
CaO + H₂O ⇒ Ca(OH)₂
2. Precipitation
Ca(OH)₂ + CO₂ ⇒ CaCO₃ + H₂O
The ions that make up the H₂O molecule are H⁺ and OH⁻. According to solubility rules, the cation (positively charged ion) is likely to be attracted to an anion (negatively charged ion). Together, they form an ionic bond. This type of bond is when there is a complete transfer of electrons between the two. The Ca²⁺ cation lacks 2 electrons, while the anion OH⁻ has an excess 1 electron. In order to be stable, 1 Ca²⁺ ion and 2 OH⁻ ions must combine.
Therefore, the answer is OH⁻ ion.
Answer:
This question sadly does not make much sense, please rephrase it.
Answer:
The answer to your question is Q = 355.64 J
Explanation:
Data
Heat = Q = ?
Temperature 1 = T1 = 20°C
Temperature 2 = T2 = 37°C
mass = m = 5 g
Specific heat = Cp = 4.184 J/g°C
Formula
Q = mCp(T2 - T1)
-Substitution
Q = (5)(4.184)(37 - 20)
-Simplification
Q = (5)(4.184)(17)
-Result
Q = 355.64 J