The answer i think it is... is Temperature
Hope this helped!
Electronegativity is a measure of an atom's ability to attract shared electrons to itself. On the periodic table, electronegativity generally increases as you move from left to right across a period and decreases as you move down a group.
There are 13 atoms in the product
<h3>Further explanation</h3>
Given
Reaction
H2SO4 + 2KOH --> K2SO4 + 2H2O
Required
The number of atoms
Solution
In a chemical equation, there are reactants on the left and products on the right
Reactants : H2SO4 + 2KOH
Products : K2SO4 + 2H2O
The number of atoms is determined by their reaction coefficient and the subscript of the atoms in the compound
K2SO4 (coefficient = 1) :
K = 2 atoms
S = 1 atom
O = 4 atoms
Total atoms = 7 atoms
2H2O(coefficient = 2) :
H = 2 x 2 = 4 atoms
O = 2 x 1 = 2 atoms
Total atoms = 6 atoms
Total = 13 atoms
Answer:
two north poles and two south poles
Explanation:
A single magnet has a north pole and a south pole. If it is broken into two pieces, then each of the two pieces will have a north pole and a south pole.
No matter how many times or into how many pieces a magnet is broken, the resulting pieces will have two poles each.
Answer: 1+
Justification:
The ionization energies tell the amount of energy needed to release an electron and form a ion. The first ionization energy if to loose one electron and form the ion with oxidation state 1+, the second ionization energy is the energy to loose a second electron and form the ion with oxidation state 2+, the third ionization energy is the energy to loose a third electron and form the ion with oxidation state 3+.
The low first ionization energy of element 2 shows it will lose an electron relatively easily to form the ion with oxidations state 1+.
The relatively high second ionization energy (and third too) shows that it is very difficult for this atom to loose a second electron, so it will not form an ions with oxidation state 2+. Furthermore, given the relatively high second and third ionization energies, you should think that the oxidation states 2+ and 3+ for element 2 never occurs.
Therefore, the expected oxidation state for the most common ion of element 2 is 1+.