1. False
Elements bond to form compounds.
Consider that compounds are essentially clumped up atoms. Knowing this, we know that atoms don’t separate, but rather combine in order to make compounds.
2. True
3. False
Atoms cam lose or gain electrons to form ionic bonds.
When at atom doesn’t have enough electrons to become stable, it will either give or take electrons from another atom in order to become stable. However, because of the fact that the atoms become oppositely charge, they attract each other, thus forming an ionic bond
-T.B.
Answer: 3 and 4 are the answers.
Explanation: i took the quiz.
<h2>
Answer:</h2>
Valance electrons can be determined by <u>Group</u> on the periodic table
<h2>
Explanation:</h2>
- Valence electrons are the electrons present in the outermost shell of an atom. We can determine the total number of valence electrons present in an atom by checking at its Group in which it is placed in the periodic table. For example, atoms in Groups 1 the number of valence electron is one and for group 2 the number of valence electrons is 2.
- The groups have number of valance electrons as follow:
Group 1 - 1 valence electron.
Group 2 - 2 valance electrons.
Group 13 - 3 valence electrons.
Group 14 - 4 valance electrons.
Group 15 - 5 valence electrons.
Group 16 - 6 valence electrons.
Group 17 - 7 valence electrons.
Group 18 - 8 valence electrons.
Result: No of valence electron can be determined by the group no. of the element.
Answer:
Explanation:
Oxygen is one of the most abundant elements on this planet. Our atmosphere is 21% free elemental oxygen. Oxygen is also extensively combined in compounds in the earths crust, such as water (89%) and in mineral oxides. Even the human body is 65% oxygen by mass.
Free elemental oxygen occurs naturally as a gas in the form of diatomic molecules, O2 (g). Oxygen exhibits many unique physical and chemical properties. For example, oxygen is a colorless and odorless gas, with a density greater than that of air, and a very low solubility in water. In fact, the latter two properties greatly facilitate the collection of oxygen in this lab. Among the unique chemical properties of oxygen are its ability to support respiration in plants and animals, and its ability to support combustion.
In this lab, oxygen will be generated as a product of the decomposition of hydrogen peroxide. A catalyst is used to speed up the rate of the decomposition reaction, which would otherwise be too slow to use as a source of oxygen. The catalyst does not get consumed by the reaction, and can be collected for re-use once the reaction is complete. The particular catalyst used in this lab is manganese(IV) oxide.
<span>P*V/T=constant
so P*V= constant*T
if T doesn't change then
P*V= constant
so 150kPa*0.8L=75kPa*xL
xL=150kPa*0.8L/75kPa=1.6L
hope it help</span>