Because it was reflected across the x axis, the distance between the two points is twice the distance of the old point from the x axis, and the distance from the old point from the x axis equals the distance from the new point to the x axis. The distance from the x axis is the absolute value of the x=y value. 7.5 is the y value, meaning the point is 7.5 units away from y=0, the x axis. The new point is twice this from the old point. 7.5 x 2 = 15. The new point is 15 units away from the old point.
Answer:
its B
Step-by-step explanation:
Answer:
See all the answers below.
Step-by-step explanation:
by² = d
Jay = 6
ay - cy = d.
cy - b) = y
Option A
by² = d
divide both side by b
y² = d/b
square both sides
y=√d/b
Option B
Jay = 6
Divide both sides by Ja
y= 6/Ja
Option C
ay - cy = d
y(a-c)=d
divide both sides by (a-c)
y= d/(a-c)
Option D
(cy - b) = y
y-cy=-b
y(1-c)=-b
y= -b/(1-c)
Check the picture below.
so, the center of the circle is the midpoint of that diametrical segment, and half that length is the radius.

![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &&(~ -2 &,& -4~) % (c,d) &&(~ 3 &,& 8~) \end{array}~~~ % distance value d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ d=\sqrt{[3-(-2)]^2+[8-(-4)]^2}\implies d=\sqrt{(3+2)^2+(8+4)^2} \\\\\\ d=\sqrt{25+144}\implies d=\sqrt{169}\implies d=13\qquad\qquad \qquad \stackrel{radius}{\frac{13}{2}}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%0A%5C%5C%5C%5C%0A%5Cbegin%7Barray%7D%7Bccccccccc%7D%0A%26%26x_1%26%26y_1%26%26x_2%26%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0A%26%26%28~%20-2%20%26%2C%26%20-4~%29%20%0A%25%20%20%28c%2Cd%29%0A%26%26%28~%203%20%26%2C%26%208~%29%0A%5Cend%7Barray%7D~~~%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B%5B3-%28-2%29%5D%5E2%2B%5B8-%28-4%29%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%283%2B2%29%5E2%2B%288%2B4%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B25%2B144%7D%5Cimplies%20d%3D%5Csqrt%7B169%7D%5Cimplies%20d%3D13%5Cqquad%5Cqquad%20%5Cqquad%20%20%5Cstackrel%7Bradius%7D%7B%5Cfrac%7B13%7D%7B2%7D%7D)