Answer:
The bonds that exist between their atoms and molecules differ on an atomic scale.
Explanation:
The three basic states of matter are solid, liquid, and gas. The major difference between them is the strength of the bonds that hold their molecules together. This affects the way that the molecules interact with each other.
The intermolecular forces binding solids together are very strong. This makes solids rigid and not able to move about freely, but rather, only able to vibrate about a mean position.
The intermolecular forces binding liquid atoms together are a lot weaker than that of solids. This makes liquids able to flow.
The intermolecular forces binding gas molecules together are the weakest. As a result, the gases can move about freely and occupy no definite volume.
Answer:
O Charles's law
.
Explanation:
Hello!
In this case, since the use of gas laws leads to a good comprehension of how gases behave towards volume, pressure and temperature, we can review that the Boyle's law explains the pressure-volume variation, the Dalton's law the partial pressure effect, the Gay-Lussac's law that of pressure and temperature and the Charles' that of temperature and volume at constant pressure; thus, the answer for the asked question is:
O Charles's law
Best regards!
The correct answer is the combination of a metal with another element.
An alloy is a combination of two or more metallic elements to make a stronger material. For instance, there are bronze alloys, brass alloys, and coin alloys.
We can confirm that an alloy is a combination of one metal with another metal because stainless steel is made of an iron and chromium alloy (iron is a metal; chromium is also a metal). Therefore, we can confirm that option C is the best choice.
Answer:
This question is incomplete
Explanation:
This question is incomplete as the volume of the base that was used during the titration was not provided. However, the completed question is in the attachment below.
The formula to be used here is CₐVₐ/CbVb = nₐ/nb
where Cₐ is the concentration of the acid = unknown
Vₐ is the volume of the acid used = 25 cm³ (as seen in the question)
Cb is the concentration of the base = 0.105 mol/dm³ (as seen in the question)
Vb is the volume of the base = 22.13 cm³ (22.1 + 22.15 + 22.15/3)
nₐ is the number of moles of acid = 1 (from the chemical equation)
nb is the number of moles of base = 2 (from the chemical equation)
Note that the Vb was based on the concordant results (values within the range of 0.1 cm³ of each other on the table) of the student
Cₐ x 25/0.105 x 22.13 = 1/2
Cₐ x 25 x 2 = 0.105 x 22.13 x 1
Cₐ x 50 = 0.105 x 22.13
Cₐ = 0.105 x 22.13/50
Cₐ = 0.047 mol/dm³
The concentration of the sulfuric acid is 0.047 mol/dm³
Answer:
This is due to the physical properties of the sample, since it affects the volume dispensed.
Explanation:
For example, in the case of very dense samples, selected samples to adhere to the surface of the tip, dispensing more slowly. In contrast, ethanol samples are less viscous and more volatile and are dispensed more rapidly. Some of the ways to minimize these inconveniences are the use of ultra low retention pipette tips, since they have a hydrophobic plastic additive that prevents the liquid from adhering to the inside of the tip.
Another way is to use the reverse pipetting.