Answer:
1. C4H8 + 6O2 -----> 4CO2 + 4H20
2. 3836.77 kcal
Explanation:
1. Balanced equation for the complete combustion of cyclobutane:
C4H8 + 6O2 -----> 4CO2 + 4H20
2. Heat of combustion of cyclobutane = 650.3 kcal/mol
Molecular weight of cyclobutane, C4H8 = 56.1 g/mol
Mole of C4H8 : mass of cyclobutane/Molecular weight of cyclobutane
Mole of C4H8 = 331/56.1 = 5.9 mol
Energy released during combustion = 5.9 mol × 650.3 kcal/mol = 3836.77kcal
Therefore the energythat is released during the complete combustion of 331 grams of cyclobutane is 3836.77kcal
The empirical formula for a compound composed of 0.0683 mol of carbon ( C ), 0.0341 mol of hydrogen ( H ), and 0.1024 mol of nitrogen ( N ) is
.
<h3>What is the empirical formula?</h3>
An empirical formula tells us the relative ratios of different atoms in a compound.
Given data:
Moles of carbon = 0.0683 mol
Moles of hydrogen = 0.0341 mol
Moles of nitrogen = 0.1024 mol
Dividing each mole using the smallest number that is divided by 0.0341 moles.
We get:
Carbon= 2
Hydrogen=1
Nitrogen=3
The empirical formula for a compound is
.
Learn more about empirical formula here:
brainly.com/question/14044066
#SPJ1
Answer:

Explanation:
![\Delta H_{rxn}=\sum [n_{i}\times \Delta H_{f}^{0}(product)_{i}]-\sum [n_{j}\times \Delta H_{f}^{0}(reactant_{j})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn_%7Bi%7D%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28product%29_%7Bi%7D%5D-%5Csum%20%5Bn_%7Bj%7D%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28reactant_%7Bj%7D%29%5D)
Where
and
are number of moles of product and reactant respectively (equal to their stoichiometric coefficient).
is standard heat of formation.
So, ![\Delta H_{rxn}=[2mol\times \Delta H_{f}^{0}(CO_{2})_{g}]+[3mol\times \Delta H_{f}^{0}(H_{2}O)_{g}]-[1mol\times \Delta H_{f}^{0}(C_{2}H_{5}OH)_{l}]-[3mol\times \Delta H_{f}^{0}(O_{2})_{g}]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B2mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28CO_%7B2%7D%29_%7Bg%7D%5D%2B%5B3mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28H_%7B2%7DO%29_%7Bg%7D%5D-%5B1mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28C_%7B2%7DH_%7B5%7DOH%29_%7Bl%7D%5D-%5B3mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28O_%7B2%7D%29_%7Bg%7D%5D)
or, ![\Delta H_{rxn}=[2mol\times -393.509kJ/mol]+[3mol\times -241.818kJ/mol]-[1mol\times -277.69kJ/mol]-[3mol\times 0kJ/mol]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B2mol%5Ctimes%20-393.509kJ%2Fmol%5D%2B%5B3mol%5Ctimes%20-241.818kJ%2Fmol%5D-%5B1mol%5Ctimes%20-277.69kJ%2Fmol%5D-%5B3mol%5Ctimes%200kJ%2Fmol%5D)
or, 
C i think is the ansower hope it helped
Answer:
You need a mixture of positive and negative ions
Explanation: