Neglecting air resistance, the acceleration of the ball is
the acceleration of gravity ... 9.8 m/s² downward.
It doesn't matter what you toss, what it's mass is, what it weighs,
what color it is, how much it cost, what its shape or size is, how
fast you toss it, in what direction, or how long it's in the air.
Its horizontal acceleration is zero and its vertical acceleration
is 9.8 m/s² downward, from the moment it leaves your hand
until the moment somebody catches it or it hits the ground.
Charge stored in a capacitor given by Q = C*V.
So, C = Q / V.
V=30V, Q=0.003C
C = 0.0001F or 100μF
To solve the problem it is necessary to identify the equation in the manner given above.
This equation corresponds to the displacement of a body under the principle of simple harmonic movement.
Where,

PART A) Our equation corresponds to

Therefore the value of omega is equivalent to that of

From the definition we know that the period as a function of angular velocity is equivalent to



This same point is the equivalent of the maximum point of the speed that the body can reach, since the internal expression of the
Is equivalent to . So the maximum speed that the body can reach is,



Therefore the maximum felocity will be 5ft / s
PART B) The period of graph is the time taken to reach from one maximum point to next point maximum point, then


The equation for kinetic energy is,
Ke = (1/2)mv^2.
You're given a kinetic energy of 790 joules, and a speed of 1.6 m/s. Plugging these values into the equation, we get,
790 = (1/2)(1.6)^2(m).
Solving for m, we get,
m = (790)/(0.5(1.6)^2).
I'll let you crunch out those numbers for yourself :D
If you have any questions, feel free to ask. Hope this helps!
Answer:
You can describe the motion of an object by its position, speed, direction, and acceleration. An object is moving if its position relative to a fixed point is changing. idk if this helps.
Explanation: