Answer:
0.2 m/s
Explanation:
given,
mass of astronaut, M = 85 Kg
mass of hammer, m = 1 Kg
velocity of hammer , v =17 m/s
speed of astronaut, v' = ?
initial speed of the astronaut and the hammer be equal to zero = ?
Using conservation of momentum
(M + m) V = M v' + m v
(M + m) x 0 = 85 x v' + 1 x 17
85 v' = -17
v' = -0.2 m/s
negative sign represent the astronaut is moving in opposite direction of hammer.
Hence, the speed of the astronaut is equal to 0.2 m/s
Answer:
The rate at which the container is losing water is 0.0006418 g/s.
Explanation:
- Under the assumption that the can is a closed system, the conservation law applied to the system would be: , where is all energy entering the system, is the total energy leaving the system and, is the change of energy of the system.
- As the purpose is to kept the beverage can at constant temperature, the change of energy () would be 0.
- The energy that goes into the system, is the heat transfer by radiation from the environment to the top and side surfaces of the can. This kind of transfer is described by: where is the emissivity of the surface, known as the Stefan–Boltzmann constant, is the total area of the exposed surface, is the temperature of the surface in Kelvin, is the environment temperature in Kelvin.
- For the can the surface area would be ta sum of the top and the sides. The area of the top would be , the area of the sides would be . Then the total area would be
- Then the radiation heat transferred to the can would be .
- The can would lost heat evaporating water, in this case would be , where is the rate of mass of water evaporated and, is the heat of vaporization of the water ().
- Then in the conservation balance: , it would be.
- Recall that , then solving for :
Answer:
5.25 m
Explanation:
Given;
The height equation h;
h=-x^2+3x+3
Where;
h = the height above water
x = horizontal distance from the end of the board
The maximum height is at h' = 0, when change in h with respect to change in x is equal to zero.
differentiating the equation h.
dh/dx = h' = -2x + 3 = 0
Solving for x;
2x = 3
x = 3/2
Substituting into the function h;
h max = -x^2+3x+3
h max = -(3/2)^2 + 3(3/2) +3 = -9/4 +9/2 +3 = 9/4 + 3 =
h max = 21/4 = 5.25 m
I am made of literally THOUSANDS of compounds ... too many to list here.
But the one compound that's most abundant, and actually comprises almost
80% of my entire beautiful body, is the compound DiHydrogen Oxide, with
the molecular formula H₂O . This compound is commonly known as "water".
Answer:
vDP = 21.7454 m/s
θ = 200.3693°
Explanation:
Given
vDE = 7.5 m/s
vPE = 20.2 m/s
Required: vDP
Assume that
vDE to be in direction of - j
vPE to be in direction of i
According to relative motion concept the velocity vDP is given by
vDP = vDE - vPE (I)
Substitute in (I) to get that
vDP = - 7.5 j - 20.2 i
The magnitude of vDP is given by
vDP = √((- 7.5)²+(- 20.2)²) m/s = 21.7454 m/s
θ = Arctan (- 7.5/- 20.2) = 20.3693°
θ is in 3rd quadrant so add 180°
θ = 20.3693° + 180° = 200.3693°