Answer:
B) 2I
Explanation:
The equation that relates voltage, current and resistance is V=RI.
The equation for the resistance of a material in terms of its resistivity, length and cross-sectional area is 
In this case, the length is divided by 2 while keeping its resistivity (since it's the same material) and area, which means the resistance gets divided by 2. Then, looking at the equation I=V/R and keeping V constant, one deduces that since the resistance now is half than before then current now must be twice as before.
This is all intuitive in fact, cuting a homogeneous resistor in half and leaving the rest of the variables constant makes twice as easy for the electrons to cross the conductor, thus twice the current (one has to know that all the variables involved behave linearly, as the equations show).
Answer:
x = 0.396 m
Explanation:
The best way to solve this problem is to divide it into two parts: one for the clash of the putty with the block and another when the system (putty + block) compresses it is spring
Data the putty has a mass m1 and velocity vo1, the block has a mass m2
. t's start using the moment to find the system speed.
Let's form a system consisting of putty and block; For this system the forces during the crash are internal and the moment is preserved. Let's write the moment before the crash
p₀ = m1 v₀₁
Moment after shock
= (m1 + m2) 
p₀ =
m1 v₀₁ = (m1 + m2) 
= v₀₁ m1 / (m1 + m2)
= 4.4 600 / (600 + 500)
= 2.4 m / s
With this speed the putty + block system compresses the spring, let's use energy conservation for this second part, write the mechanical energy before and after compressing the spring
Before compressing the spring
Em₀ = K = ½ (m1 + m2)
²
After compressing the spring
= Ke = ½ k x²
As there is no rubbing the energy is conserved
Em₀ = 
½ (m1 + m2)
² = = ½ k x²
x =
√ (k / (m1 + m2))
x = 2.4 √ (11/3000)
x = 0.396 m
Mechanical energy can have mechanical systems. The only mechanical system in the list is the compressed spring. A car battery and a glowing incandescent lightbulb have electrical energy, a nucleus of atom has potential (internal) energy.
Answer:
1) No, the car does not travel at constant speed.
2) V = 9 ft/s
3) No, the car does not travel at constant speed.
4) V = 5.9 ft/s
Explanation:
In order to know if the car is traveling at constant speed we need to derive the given formula. That way we get speed as a function of time:
V(t) = 2*t + 2 Since the speed depends on time, the speed is not constant at any time.
For the average speed we evaluate the formula for t=2 and t=5:
d(2) = 8 ft and d(5) = 35 ft

Again, for the average speed we evaluate the formula for t=1.8 and t=2.1:
d(1.8) = 6.84 ft and d(2.1) = 8.61 ft
