Answer:
Length of hole (s) = 362.77 m (Approx)
Explanation:
Given:
Time taken to hit the bottom (t) = 8.6 s
Acceleration due to gravity (g) = 9.81 m/s²
Find:
Length of hole (s) = ?
Computation:
Initial velocity (u) = 0 m/s
S = ut +1/2(gt²)
S = (0)(8.6) +1/2(9.81)(8.6)(8.6)
S = 1/2(9.81)(8.6)(8.6)
S = 1/2(9.81)(8.6)(8.6)
S = 362.7738
Length of hole (s) = 362.77 m (Approx)
Answer:


Explanation:
Given:
temperature of source reservoir, 
temperature of sink reservoir, 
energy absorbed from the source, 
work done, 
a.
<u>Now change in entropy of the surrounding:</u>

<em>Since heat engine is a device that absorbs heat from a high temperature reservoir and does some work giving out heat in the universe as the byproduct.</em>



b.
<u>We know Carnot efficiency is given as:</u>



<u>Now the Carnot work done:</u>


.......................(1)
c.
From eq. (1) we have the Carnot work, so the difference:



Now, we find:

Answer:
b = 242 m
Explanation:
A = 24200 m²
a = 100 m
b = ?
A seguinte fórmula é aplicada
A = a*b
⇒ b = A / a
⇒ b = (24200 m²) / (100 m)
⇒ b = 242 m
Gravitational potential energy is energy an object possesses because of its position in a gravitational field. The equation for gravitational potential energy is GPE = mgh.
GPE = 1200(1.6)(350) = 672000 J
Hope this answers the question. Have a nice day.
<span>A concave mirror and a converging lens will only produce a real image if the object is located beyond the focal point (i.e., more than one focal length away). The image of an object is found to be upright and reduced in size.</span>