Answer:
yes, though the speed may stay constant, the direction will change. so for example, you're going 70mph on the freeway, but you have to take the exit on your right (the exit continues on to a different freeway), you're not going to speed up or slow down, you'll change your direction which is still accelerating.
Explanation:
Credit goes to @naeAF
Hope this helps :))
a. The force applied would be equal to the frictional
force.
F = us Fn
where, F = applied force = 35 N, us = coeff of static
friction, Fn = normal force = weight
35 N = us * (6 kg * 9.81 m/s^2)
us = 0.595
b. The force applied would now be the sum of the
frictional force and force due to acceleration
F = uk Fn + m a
where, uk = coeff of kinetic friction
35 N = uk * (6 kg * 9.81 m/s^2) + (6kg * 0.60 m/s^2)
uk = 0.533
The equation that represents the principle of the lever balance is:
- W₁ + W₂ = W3 + W4; option A.
<h3>What is the principle of moments?</h3>
The principle of moments states when a body is in equilibrium, the sum of the clockwise moment about a point equals the sum of anticlockwise moment about that point.
A see-saw represents a balanced system of moments.
The sum of clockwise moment = The sum of anticlockwise moments.
Assuming W1 and W2 are clockwise moments and W3 and W4 are anticlockwise moments.
The equation will b: W₁ + W₂ = W3 + W4
In conclusion, a balanced see-saw illustrates the principle of the lever balance.
Learn more about principle of moments at: brainly.com/question/20519177
#SPJ1
Answer:
h = 599.5 m
Explanation:
Given,
height of structure = 828 m
weight of the tourist = 184 lb
= 184 x 0.45359 = 83.43 Kg
Potential energy = 187000 J
PE = m gd


h = 228.5 m
Height of the room above the ground.
h = 828 - 228.5
h = 599.5 m
Height of the floor above ground is equal to 599.5 m.
"The position of each element in the table gives important information about its structure, properties, and behavior in chemical reactions. Specifically, an element's position in the periodic table helps you figure out its electron configuration, how the electrons are organized around the nucleus."