Answer:
The minimum time to get the car under max. speed limit of 79 km/h is 2.11 seconds.
Explanation:

isolating "t" from this equation:

Where:
a=
(negative because is decelerating)

First we must convert velocity from km/h to m/s to be consistent with units.


So;

Answer:
2ms-¹ means that the body under consideration moves 2m in a second, and may be it will continue to move 2m in every 1 second, if there's no external unbalanced force acting on that body (those forces do include frictional forces). mark its brainlist plz. Kaneppeleqw and 6 more users found this answer helpful. Thanks 3.
Answer:
Option D
2 m/s
Explanation:
The speed is given by distance/time
The complete wave has a distance of 8 m (This is the wavelength)
Time taken for complete wave is 4 s
Therefore, velocity= 8 m/ 4 s= 2 m/s
The amplitude is the distance between crest and trough hence 9 m- 6 m= 3 m
Frequency is 1/period and in this case period is 4 s hence frequency= 1/4= 0.25 Hz
Essentially, what we wanted is velocity
Answer:
Explanation:
Discount the time here; it's not important. It doesn't tell you how long it takes the car to stop, it only refers to reaction time, which means nothing in the scheme of things.
The useful info is as follows:
initial velocity = 20 m/s
final velocity = 0 m/s
a = -10 m/s/s
and we are looking for the displacement. Use the following equation:
Δx
where v is the final velocity, v₀ is the initial velocity, a is the deceleration (since it's negative), and Δx is displacement. Filling in:
Δx and
0 = 400 - 20Δx and
-400 = -20Δx so
Δ = 20 meters
Yes you are right but sometimes just because a number is bigger doesnt always make it so.