Answer:
Solution given:
height [H]=25m
initial velocity [u]=8.25m/s
g=9.8m/s
now;
a. How long is the ball in flight before striking the ground?
Time of flight =?
Now
Time of flight=
substituting value
- =

- =2.26seconds
<h3>
<u>the ball is in flight before striking the ground for 2.26seconds</u>.</h3>
b. How far from the building does the ball strike the ground?
<u>H</u><u>o</u><u>r</u><u>i</u><u>z</u><u>o</u><u>n</u><u>t</u><u>a</u><u>l</u><u> </u>range=?
we have
Horizontal range=u*
<h3>
<u>The ball strikes 18.63m far from building</u>. </h3>
Answer:
i don't understand the hw
Answer:
The girl has greater tangential acceleration
Explanation:
The angular acceleration (
) of the merry go round is equal to the rate of the change of the angular velocity,
:

Since all the points of the merry go round complete 1 circle in the same time, the angular velocity of each point of the merry go round is the same, and so all the points also have the same angular acceleration.
The tangential acceleration instead is given by

where
is the angular acceleration
r is the distance from the centre of the merry go round
Since the girl is near the outer edge and the boy is closer to the centre, the value of r for the girl is larger than for the boy, so the girl has greater tangential acceleration.
K.E. = 1/2 mv²
K.E. is directly proportional to v^2
So, when K.E. increase by 2, K.E. increase by root. 2
v' = 1.41v
original v value was 3 so, final would be:
v' = 1.41*3 = 4.23
After round-off to it's tenth value, it will be:
v' = 4.2
So, option B is your answer!
Hope this helps!
Answer:
100°heat
Explanation:
since when i calculate this and that, the answer is 100° heat.
sorry if it is inconvenient