Answer 1 / 25
Step-by-step explanation:
The probability that the first
of the three mutants will take over the population = 2 / 100
The probability that the second
of the three mutants will take over the population = 1.01 / 100
The probability that the third
of the three mutants will take over the population = 0.99 / 100
Therefore, the probability that each of the three mutants will take over the population = probability of the first,second or third = 2 / 100 + 1.01 / 100 + 0.99 / 100 = (2+1.01+0.99)/100 = 4 / 100 = 2/25
Answer:
The temp got colder by -1
Step-by-step explanation:
The difference of -3 to -4
-4 + -3 = -1
Answer:
Step-by-step explanation:
Let's call hens h and ducks d. The first algebraic equation says that 6 hens (6h) plus (+) 1 duck (1d) cost (=) 40.
The second algebraic equations says that 4 hens (4h) plus (+) 3 ducks (3d) cost (=) 36.
The system is
6h + 1d = 40
4h + 3d = 36
The best way to go about this is to solve it by substitution since we have a 1d in the first equation. We will solve that equation for d since that makes the most sense algebraically. Doing that,
1d = 40 - 6h.
Now that we know what d equals, we can sub it into the second equation where we see a d. In order,
4h + 3d = 36 becomes
4h + 3(40 - 6h) = 36 and then simplify. By substituting into the second equation we eliminated one of the variables. You can only have 1 unknown in a single equation, and now we do!
4h + 120 - 18h = 36 and
-14h = -84 so
h = 6.
That means that each hen costs $6. Since the cost of a duck is found in the bold print equation above, we will sub in a 6 for h to solve for d:
1d = 40 - 6(6) and
d = 40 - 36 so
d = 4.
That means that each duck costs $4.
i am pretty sure it is 0.6
Answer:
put a picture up
Step-by-step explanation: