1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jonny [76]
3 years ago
6

Find derivative problem Find B’(6)

Mathematics
1 answer:
dalvyx [7]3 years ago
5 0

Answer:

B^\prime(6) \approx -28.17

Step-by-step explanation:

We have:

\displaystyle B(t)=24.6\sin(\frac{\pi t}{10})(8-t)

And we want to find B’(6).

So, we will need to find B(t) first. To do so, we will take the derivative of both sides with respect to x. Hence:

\displaystyle B^\prime(t)=\frac{d}{dt}[24.6\sin(\frac{\pi t}{10})(8-t)]

We can move the constant outside:

\displaystyle B^\prime(t)=24.6\frac{d}{dt}[\sin(\frac{\pi t}{10})(8-t)]

Now, we will utilize the product rule. The product rule is:

(uv)^\prime=u^\prime v+u v^\prime

We will let:

\displaystyle u=\sin(\frac{\pi t}{10})\text{ and } \\ \\ v=8-t

Then:

\displaystyle u^\prime=\frac{\pi}{10}\cos(\frac{\pi t}{10})\text{ and } \\ \\ v^\prime= -1

(The derivative of u was determined using the chain rule.)

Then it follows that:

\displaystyle \begin{aligned} B^\prime(t)&=24.6\frac{d}{dt}[\sin(\frac{\pi t}{10})(8-t)] \\ \\ &=24.6[(\frac{\pi}{10}\cos(\frac{\pi t}{10}))(8-t) - \sin(\frac{\pi t}{10})] \end{aligned}

Therefore:

\displaystyle B^\prime(6) =24.6[(\frac{\pi}{10}\cos(\frac{\pi (6)}{10}))(8-(6))- \sin(\frac{\pi (6)}{10})]

By simplification:

\displaystyle B^\prime(6)=24.6 [\frac{\pi}{10}\cos(\frac{3\pi}{5})(2)-\sin(\frac{3\pi}{5})] \approx -28.17

So, the slope of the tangent line to the point (6, B(6)) is -28.17.

You might be interested in
West Virginia math glencone course 2 volume 1 page 191
Step2247 [10]

Answer:

Im not sure but I think its -5

7 0
3 years ago
) find a vector parallel to the line of intersection of the planes 5x − y − 6z = 0 and x + y + z = 1.
snow_tiger [21]
The cross product of the normal vectors of two planes result in a vector parallel to the line of intersection of the two planes.

Corresponding normal vectors of the planes are
<5,-1,-6> and <1,1,1>

We calculate the cross product as a determinant of (i,j,k) and the normal products

    i   j   k
   5 -1 -6
   1  1  1

=(-1*1-(-6)*1)i -(5*1-(-6)1)j+(5*1-(-1*1))k
=5i-11j+6k
=<5,-11,6>

Check orthogonality with normal vectors using scalar products
(should equal zero if orthogonal)
<5,-11,6>.<5,-1,-6>=25+11-36=0
<5,-11,6>.<1,1,1>=5-11+6=0

Therefore <5,-11,6> is a vector parallel to the line of intersection of the two given planes.
5 0
3 years ago
Select the correct answer. Which expression is equivalent to 8x^2^3 sqrt 375x + 2^3 sqrt 3x^7, if x=0?
natima [27]

Answer:

(8x^3)^ \frac{2}{3} \sqrt{75x^3}  + 2^3 \sqrt{ 3x^7} =28x^3\sqrt{3x}

Step-by-step explanation:

The question is poorly formatted. The original question is:

(8x^3)^ \frac{2}{3} \sqrt{75x^3} + 2^3 \sqrt{ 3x^7

We have:

(8x^3)^ \frac{2}{3} \sqrt{75x^3} + 2^3 \sqrt{ 3x^7

Open bracket

(8x^3)^ \frac{2}{3} \sqrt{75x^3} + 2^3 \sqrt{ 3x^7} =(8^ \frac{2}{3} *x^{3* \frac{2}{3}}) \sqrt{75x^3} + 2^3 \sqrt{ 3x^7}

(8x^3)^ \frac{2}{3} \sqrt{75x^3} + 2^3 \sqrt{ 3x^7} =(8^ \frac{2}{3} *x^2) \sqrt{75x^3} + 2^3 \sqrt{ 3x^7}

Express 8 as 2^3

(8x^3)^ \frac{2}{3} \sqrt{75x^3} + 2^3 \sqrt{ 3x^7} =(2^{3* \frac{2}{3}} *x^2) \sqrt{75x^3} + 2^3 \sqrt{ 3x^7}

(8x^3)^ \frac{2}{3} \sqrt{75x^3} + 2^3 \sqrt{ 3x^7} =(2^2 *x^2) \sqrt{75x^3} + 2^3 \sqrt{ 3x^7}

(8x^3)^ \frac{2}{3} \sqrt{75x^3} + 2^3 \sqrt{ 3x^7} =4x^2 \sqrt{75x^3} + 2^3 \sqrt{ 3x^7}

Express 2^3 as 8

(8x^3)^ \frac{2}{3} \sqrt{75x^3} + 2^3 \sqrt{ 3x^7}=4x^2 \sqrt{75x^3} + 8\sqrt{ 3x^7}

Expand each exponent

(8x^3)^ \frac{2}{3} \sqrt{75x^3} + 2^3 \sqrt{ 3x^7}=4x^2 \sqrt{25x^2 *3x} + 8\sqrt{ 3x * x^6}

Split

(8x^3)^ \frac{2}{3} \sqrt{75x^3} + 2^3 \sqrt{ 3x^7}=4x^2 \sqrt{25x^2} *\sqrt{3x} + 8\sqrt{3x} * \sqrt{x^6}

(8x^3)^ \frac{2}{3} \sqrt{75x^3}  + 2^3 \sqrt{ 3x^7} =4x^2 *5x *\sqrt{3x} + 8\sqrt{3x} * x^3

(8x^3)^ \frac{2}{3} \sqrt{75x^3}  + 2^3 \sqrt{ 3x^7} =20x^3\sqrt{3x} + 8x^3\sqrt{3x}

Factorize

(8x^3)^ \frac{2}{3} \sqrt{75x^3}  + 2^3 \sqrt{ 3x^7} =28x^3\sqrt{3x}

4 0
3 years ago
Read 2 more answers
Can you PLEASE write a paragraph of how tragicomic functions work PLEASE!!!
iogann1982 [59]
They are used for making the sides of a triangle into a ratio. Sine is opposite of the angle divide by the hypotenuse, cosine is adjacent divided by the hypotenuse, and tangent is the opposite divided by the adjacent. Sine is the y-component, cosine is the x-component, and tangent is the ratio of sine/cosine or can also be considered the slope.
7 0
3 years ago
13.
Alex787 [66]

Answer:  A. c = 3d

I'm gonna go with c = 3d

Step-by-step explanation:  c = 3d

After looking at the table I believe the equation would be c=3d. I came to this conclusion because (6)=3(2); (9)=3(3); (15)=3(5); 18=3(6). I really hope this helps!:)

...................................................................................................................................................

Answer:

Step-by-step explanation:

Days  Cost

2          6

3          9

5         15

6         18

Now to find equation that models the given data we will use two point slope form.

Formula:

Substitute the values in the formula

where y denotes the number of days and x denotes the cost

Let us suppose d denotes the number of days and c denotes the cost

So, equation becomes:  

Hence an equation models the data in the table is  

So, option A is true.

4 0
3 years ago
Other questions:
  • What is 52% of 25?
    15·2 answers
  • 5+10-2•3<br><br> A 39 <br><br> B 9<br><br> C 29 <br><br> D 19
    15·2 answers
  • 7 times as much as the sum of 1/3 and 4/5
    5·1 answer
  • Find the greatest possible value for a+b+c+d if b is a positive integer and a,b,c,d satisfy the system of equations
    15·2 answers
  • Dianne knows a phone call a friend for the first 3 minutes costs 25 cents and 10 cents for each additional minute
    12·1 answer
  • Simplify the expression.
    9·2 answers
  • Only blue and white vans are made at a factory. The ratio of the number of blue vans to the number of white vans is 4 : 3 write
    5·1 answer
  • Kyle is buying turkey from the deli. If turkey cost 8.50 per kilogram and he wants 3 kilograms how much will he spend on the tur
    7·1 answer
  • Can someone help me out with this?
    12·1 answer
  • How do you write 125% as a fraction mixed number or whole number
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!