The value of the population of the growth of an endangered birth after 5 years is 1975
<h3>How to determine the population after 5 years?</h3>
The population function is given as:
B(t) = 100 + 3/5t^5
At 5 years, the value of t is 5
So, we have
t = 5
Next, we substitute 5 for t in the equation B(t) = 100 + 3/5t^5
This gives
B(5) = 100 + 3/5 * 5^5
Evaluate the exponent
B(5) = 100 + 3/5 * 3125
Evaluate the product
B(5) = 100 + 1875
Evaluate the sum
B(5) = 1975
Hence, the value of the population of the growth of an endangered birth after 5 years is 1975
Read more about exponential functions at:
brainly.com/question/2456547
#SPJ1
Answer: 0.6 pounds
Step-by-step explanation: 3 divided by 5 = 0.6 pounds
Kevin installed a certain brand of automatic garage door opener that utilizes a transmitter control with four independent switches, each one set on or off. The receiver (wired to the door) must be set with the same pattern as the transmitter. If six neighbors with the same type of opener set their switches independently.<u>The probability of at least one pair of neighbors using the same settings is 0.65633</u>
Step-by-step explanation:
<u>Step 1</u>
In the question it is given that
Automatic garage door opener utilizes a transmitter control with four independent switches
<u>So .the number of Combinations possible with the Transmitters </u>=
2*2*2*2= 16
<u>
Step 2</u>
Probability of at least one pair of neighbors using the same settings = 1- Probability of All Neighbors using different settings.
= 1- 16*15*14*13*12*11/(16^6)
<u>
Step 3</u>
Probability of at least one pair of neighbors using the same settings=
= 1- 0.343666
<u>
Step 4</u>
<u>So the probability of at least </u>one pair of neighbors using the same settings
is 0.65633
Answer:
in my opinion anush has the better performance