Answer:
the answers would be the same
Answer:
$ 8,695.35
Step-by-step explanation:
This is a compound interest question
Amount after t years = A = P(1 + r/n)^nt
Where P = Initial Amount saved
r = interest rate
t = time in years
n = compounding frequency
A = 10,000
r = 3.5 %
t = 21 - 17 = 4 years
n = Compounded monthly = 12
Step 1
Converting R percent to r a decimal
r = R/100 = 3.5%/100 = 0.035 per year.
P = A / (1 + r/n)^nt
Solving our equation:
P = 10000 / ( 1 + (0.035/12)^12 ×4 =
P = $8,695.35
The principal investment required to get a total amount, principal plus interest, of $10,000.00 from interest compounded monthly at a rate of 3.5% per year for 4 years is $8,695.35.
0.08x+(x-200)
(0.08x)(x+-200)
(0.08x)(x)(0.08x)(-200)
= 0.08x^2-16x
3 because the x value has been repeated
Answer:
Step-by-step explanation:
This is a binomial probability distribution because there are only 2 possible outcomes. It is either a randomly selected student grabs a packet before being seated or the student sits first before grabbing a packet. The probability of success, p in this scenario would be that a randomly selected student sits first before grabbing a packet. Therefore,
p = 1 - 0.81 = 0.91
n = 9 students
x = number of success = 3
The probability that exactly two students sit first before grabbing a packet, P(x = 2) would be determined from the binomial probability distribution calculator. Therefore,
P(x = 2) = 0.297