The minimum distance between the asteroid and the sun is 10 - 6 =4
The given hyperbolic path defined as
divide both the sides by 576,
The general equation of
hyperbola is written as
;
Compare with above mention equation
Here
The distance between the asteroid and the sun is seen by figure -1
or
⇒c =10
The minimum distance between the asteroid and the sun is 10 -6 =4
13 and 2, I think that is the only one left.
Here it is given that AB || CD
< EIA = <GJB
Now
∠EIA ≅ ∠IKC and ∠GJB is ≅ ∠ JLD (Corresponding angles)
∠EIA ≅ ∠GJB then ∠IKC ≅ ∠ JLD (Substitution Property of Congruency)
∠IKL + ∠IKC 180° and ∠DLH + ∠JLD =180° (Linear Pair Theorem)
So
m∠IKL + m∠IKC = 180° ....(1)
But ∠IKC ≅ ∠JLD
m∠IKC = m∠JLD (SUBTRACTION PROPERTY OF CONGRUENCY)
So we have
m∠IKL + m∠JLD = 180°
∠IKL and ∠JLD are supplementary angles.
But ∠DLH and ∠JLD are supplementary angles.
∠IKL ≅ ∠DLH (CONGRUENT SUPPLEMENTS THEOREM)
Answer: C. 5
Step-by-step explanation:See the attached picture.
Answer:
∛27 = 3
Step-by-step explanation:
A radical is simply a fractional exponent: ![a^{(\frac{m}{n})} = \sqrt[n]{a^{m} }](https://tex.z-dn.net/?f=a%5E%7B%28%5Cfrac%7Bm%7D%7Bn%7D%29%7D%20%3D%20%5Csqrt%5Bn%5D%7Ba%5E%7Bm%7D%20%7D)
Hence, ∛27 = 
Since 27 = 3³, then:
You could rewrite ∛27 as ∛(3)³.
![\sqrt[3]{3^{(3)} } = 3^{[(3)*(\frac{1}{3})]}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B3%5E%7B%283%29%7D%20%7D%20%3D%203%5E%7B%5B%283%29%2A%28%5Cfrac%7B1%7D%7B3%7D%29%5D%7D)
Multiplying the fractional exponents (3 × 1/3) will result in 1 (because 3 is the <u><em>multiplicative inverse</em></u> of 1/3). The multiplicative inverse of a number is defined as a number which when multiplied by the original number gives the product as 1.
Therefore, ∛27 = 3.