1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natita [175]
3 years ago
8

(1)science whoever gets this right will get a brainlest.

Physics
2 answers:
Finger [1]3 years ago
8 0
It is true because you are not giving the poor guy brainliest
olganol [36]3 years ago
6 0
This is true

Some ads convince people to use drugs so that they buy their product
You might be interested in
An object's velocity can be described by its speed and acceleration.
dezoksy [38]
Hey there!

<span> An object's velocity can be described by its speed and acceleration.

This statement is true

Hope this helps
Have a great day (:
</span>
5 0
3 years ago
Read 2 more answers
An object is originally moving at a constant velocity of 8 m/s in the -x direction. It moves at this constant velocity for 3 sec
aivan3 [116]

Answer:

244.64m

Explanation:

First, we find the distance traveled with constant velocity. It's simply multiplying velocity time the time that elapsed:

x = V*t = -8\frac{m}{s} *3s = -24m

After this, the ball will start traveling with a constant acceleration motion. Due to the fact that the acceleration is the opposite direction to the initial velocity, this motion will have 2 phases:

1. The velocity will start to decrease untill it reaches 0m/s.

2. Then, the velocity will start to increase at the rate of the acceleration.

The distance that the ball travels in the first phase can be found with the following expression:

v^2 = v_0^2 + 2a*d

Where v is the final velocity (0m/s), v_0 is the initial velocity (-8m/s) and a is the acceleration (+9m/s^2). We solve for d:

d = \frac{v^2 - v_0^2}{2a} = \frac{(0m/s)^2 - (-8m/s)^2}{2*7m/s^2}= -4.57m

Now, before finding the distance traveled in the second phase, we need to find the time that took for the velocity to reach 0:

t_1 = \frac{v}{a} = \frac{8m/s}{7m/s^2} = 1.143 s

Then, the time of the second phase will be:

t_2 = 9s - t_1 = 9s - 1.143s = 7.857s

Using this, we using the equations for constant acceleration motion in order to calculate the distance traveled in the second phase:

x = \frac{1}{2}a*t^2 + v_0*t + x_0

V_0, the initial velocity of the second phase, will be 0 as previously mentioned. X_0, the initial position, will be 0, for simplicity:

x = \frac{1}{2}*7\frac{m}{s^2}*t^2 + 0m/s*t + 0m = 216.07m

So, the total distance covered by this object in meters will be the sum of all the distances we found:

x_total = 24m + 4.57m + 216.07m = 244.64m

8 0
3 years ago
The charges that are free to move in a metallic conducting wire and that are responsible for the flow of electric current are- a
SVEN [57.7K]

Answer:

D) The negatively charged electrons

Electricity passes through metallic conductors as a flow of negatively charged electrons. The electrons are free to move from one atom to another. We call them a sea of delocalised electrons. Current was originally defined as the flow of charges from positive to negative. Please give me the brainliest answer?

:) Hoped this helped!!! Have a good day!!! <3

3 0
3 years ago
Having just enough weight to achieve all three states of buoyancy with only minor adjustments in the water is the definition of:
eduard

Answer:

Proper weighting

Explanation:

Proper weighing involves the condition of a scuba diver that is fully geared having a near empty tank and the BCD emptied with a held breadth is expected to float at eye level

The fundamental of adequate or good buoyancy of a scuba diver is to ensure proper weighting when diving, With proper weighting, there is more control for the diver when a safety stop is required. There is less need to carry excess weight that increases drag and gas consumption.  

6 0
3 years ago
Explain how the situation shown above would be different if the skier experiences friction while traveling downhill. Include the
aleksandrvk [35]

Answer:

The force of friction acts in the direction opposite to the direction of motion. If friction would have been applied to the skier it would have resulted in a lower velocity and less kinetic energy.

Explanation:

5 0
3 years ago
Other questions:
  • Consider an electron that is 10^-10 m from an alpha particle (q = +3.2 times 10^-19 C). (a) What is the electric field due to th
    6·1 answer
  • The angular velocity of a process control motor is (13−12t2) rad/s, where t is in seconds. Part A At what time does the motor re
    13·1 answer
  • Acceleration of 1.5 ms expressed in km /hr2? ​
    9·1 answer
  • Suppose that a sled is accelerating at a rate of 2 m/s2. If the net force is tripled and the mass is halved, then what is the ne
    5·1 answer
  • The frequency of a wave is 200 Hz. The wavelength is 0.1 m. What is the period of the wave?
    13·1 answer
  • An object moving at a constant velocity will always have a what
    10·2 answers
  • Explain why a book placed on a table does not move?
    10·2 answers
  • Differentiate between mass and weight
    7·1 answer
  • Put them in order to smallest to largest: centimeter, femtometer, kilometer, light year, meter, nanometer​
    14·1 answer
  • What is the initial vertical velocity?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!