Answer:
<h3>
3</h3>
Step-by-step explanation:
h(3) = 1
h(5) = 3
Their products :

Well it shows that the main cube is 9 blocks tall. It is a perfect cube, not a rectangular prism or anything, so every side is the same. So 9 cubed. Or, in other words, 9*9*9
Answer:
sec theta = (sqrt24/5) cos theta = -2/5 tan theta = (-[sqrt 21]/2) sec theta = 5/2 csc theta = (5sqrt21)/21 cot theta = (-2sqrt21)/21
Step-by-step explanation:
During the problem, secx = -5/2, we can assume that as cos = -2/5. -2 = x. 5 = r. find for Y with: x^2+y^2=r^2. After that, plug in for the variables and you get all the answers. Rationalize the square roots, don't forget.
Answer:
The Taylor series of f(x) around the point a, can be written as:

Here we have:
f(x) = 4*cos(x)
a = 7*pi
then, let's calculate each part:
f(a) = 4*cos(7*pi) = -4
df/dx = -4*sin(x)
(df/dx)(a) = -4*sin(7*pi) = 0
(d^2f)/(dx^2) = -4*cos(x)
(d^2f)/(dx^2)(a) = -4*cos(7*pi) = 4
Here we already can see two things:
the odd derivatives will have a sin(x) function that is zero when evaluated in x = 7*pi, and we also can see that the sign will alternate between consecutive terms.
so we only will work with the even powers of the series:
f(x) = -4 + (1/2!)*4*(x - 7*pi)^2 - (1/4!)*4*(x - 7*pi)^4 + ....
So we can write it as:
f(x) = ∑fₙ
Such that the n-th term can written as:
