In low-pressure belts, there is an absence of surface winds because winds approaching them rise near their margin. This causes vertical currents. when they pass along the ocean, they suck up a lot of water and get a lot of moisture, thus giving wet and humid weather.
The balance of forces allows to find the result for the question if the isotope of boron 9.99 una is stable:
-
The boron isotope of mass 9.99 uma is unstable because the repulsive force increases.
The stability of atomic nuclei depends on the balance the force is electrostatic repulsion between the protons and the strong interaction of attraction.
One way to achieve this balance is to increase the separation of the protons with uncharged particles between them, the neutral ones, the strong interaction is of the same magnitude for protons and neutrons, therefore the repulsion is decreased and the strong attraction interaction is maintained. .
In the case of Boron, which has 5 protons, the stable structures have more atomistic 10 and 11 una, which is why it has 5 and 6 neutrons each. Therefore each proton has a neutrons next to it and in the other case a proton at the end has two neutrons, this causes the distance between the protons to increase, decreasing the electrostatic repulsion.
It indicates that we have a Boron nucleus of mass 9.999. The number of protons must remain fixed, therefore there are only 4 neutrons.
Consequently, some of the protons does not have a neutron next to it and can approach the other proton, therefore the electrostatic repulsion increases and the stability of the atom decreases.
In conclusion, using the balance of Forces we can find the result for the question if the isotope of boron 9.99 una is stable:
-
The boron isotope of mass 9.99 amu is unstable because the repulsive force increases.
Learn more about nuclear stability here: brainly.com/question/897383
Answer: Correct option is B)
The standard enthalpy change of formation of a compound is the enthalpy change which occurs when one mole of the compound is formed from its elements under standard conditions. The equation showing the standard enthalpy change of formation of water is
H
2
(g)+
2
1
O
2
(g)⟶H
2 ↑
O(l) 1 mole of water formed.
∴ Enthalpy of formation is −X2kJ/mol.
________________________________________________________
Explanation:I hope this helped
pH=2.7
<h3>Further explanation</h3>
Acetic acid = weak acid
![\tt [H^+]=\sqrt{Ka.M}](https://tex.z-dn.net/?f=%5Ctt%20%5BH%5E%2B%5D%3D%5Csqrt%7BKa.M%7D)
Ka = acid ionization constant
M = molarity
Ka for Acetic acid(CH₃COOH) : 1.8 x 10⁻⁵
![\tt [H^+]=\sqrt{1.8\times 10^{-5}\times 0.222}\\\\=0.001998=1.998\times 10^{-3}](https://tex.z-dn.net/?f=%5Ctt%20%5BH%5E%2B%5D%3D%5Csqrt%7B1.8%5Ctimes%2010%5E%7B-5%7D%5Ctimes%200.222%7D%5C%5C%5C%5C%3D0.001998%3D1.998%5Ctimes%2010%5E%7B-3%7D)

Answer:
not a solid/ dissolved in water/ through melting because the ion's electrons have to be able to move freely and they can't do this when they are solids. they can occur