Answer:
Both get the same results that is,
![\left[\begin{array}{ccc}140\\160\\200\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D140%5C%5C160%5C%5C200%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Given :
![\bf M=\left[\begin{array}{ccc}\frac{1}{5}&\frac{1}{5}&\frac{2}{5}\\\frac{2}{5}&\frac{2}{5}&\frac{1}{5}\\\frac{2}{5}&\frac{2}{5}&\frac{2}{5}\end{array}\right]](https://tex.z-dn.net/?f=%5Cbf%20M%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%5C%5C%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B1%7D%7B5%7D%5C%5C%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%5Cend%7Barray%7D%5Cright%5D)
and initial population,
![\bf P=\left[\begin{array}{ccc}130\\300\\70\end{array}\right]](https://tex.z-dn.net/?f=%5Cbf%20P%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D130%5C%5C300%5C%5C70%5Cend%7Barray%7D%5Cright%5D)
a) - After two times, we will find in each position.
![P_2=[P].[M]^2=[P].[M].[M]](https://tex.z-dn.net/?f=P_2%3D%5BP%5D.%5BM%5D%5E2%3D%5BP%5D.%5BM%5D.%5BM%5D)
![M^2=\left[\begin{array}{ccc}\frac{1}{5}&\frac{1}{5}&\frac{2}{5}\\\frac{2}{5}&\frac{2}{5}&\frac{1}{5}\\\frac{2}{5}&\frac{2}{5}&\frac{2}{5}\end{array}\right]\times \left[\begin{array}{ccc}\frac{1}{5}&\frac{1}{5}&\frac{2}{5}\\\frac{2}{5}&\frac{2}{5}&\frac{1}{5}\\\frac{2}{5}&\frac{2}{5}&\frac{2}{5}\end{array}\right]](https://tex.z-dn.net/?f=M%5E2%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%5C%5C%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B1%7D%7B5%7D%5C%5C%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%5Cend%7Barray%7D%5Cright%5D%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%5C%5C%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B1%7D%7B5%7D%5C%5C%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%5Cend%7Barray%7D%5Cright%5D)
![=\frac{1}{25} \left[\begin{array}{ccc}7&7&7\\8&8&8\\10&10&10\end{array}\right]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B25%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%267%267%5C%5C8%268%268%5C%5C10%2610%2610%5Cend%7Barray%7D%5Cright%5D)
![\therefore\;\;\;\;\;\;\;\;\;\;\;P_2=\left[\begin{array}{ccc}7&7&7\\8&8&8\\10&10&10\end{array}\right] \times\left[\begin{array}{ccc}130\\300\\70\end{array}\right] = \left[\begin{array}{ccc}140\\160\\200\end{array}\right]](https://tex.z-dn.net/?f=%5Ctherefore%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3BP_2%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%267%267%5C%5C8%268%268%5C%5C10%2610%2610%5Cend%7Barray%7D%5Cright%5D%20%5Ctimes%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D130%5C%5C300%5C%5C70%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D140%5C%5C160%5C%5C200%5Cend%7Barray%7D%5Cright%5D)
b) - With in migration process, 500 people are numbered. There will be after a long time,
![After\;inifinite\;period=[M]^n.[P]](https://tex.z-dn.net/?f=After%5C%3Binifinite%5C%3Bperiod%3D%5BM%5D%5En.%5BP%5D)
![Then,\;we\;get\;the\;same\;result\;if\;we\;measure [M]^n=\frac{1}{25} \left[\begin{array}{ccc}7&7&7\\8&8&8\\10&10&10\end{array}\right]](https://tex.z-dn.net/?f=Then%2C%5C%3Bwe%5C%3Bget%5C%3Bthe%5C%3Bsame%5C%3Bresult%5C%3Bif%5C%3Bwe%5C%3Bmeasure%20%5BM%5D%5En%3D%5Cfrac%7B1%7D%7B25%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%267%267%5C%5C8%268%268%5C%5C10%2610%2610%5Cend%7Barray%7D%5Cright%5D)
![=\left[\begin{array}{ccc}140\\160\\200\end{array}\right]](https://tex.z-dn.net/?f=%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D140%5C%5C160%5C%5C200%5Cend%7Barray%7D%5Cright%5D)
Answer:
Correct answer is the domain.
Step-by-step explanation:
A domain is the input set of a function.
A range is the output set of the function.
It is more important to know the domain of the function to be able to determine the corresponding output set so the function can be graphed. To start with the domain is very useful because every domain element has a corresponding unique output element.
Suppose you started with the range element of 9. The input set for an output of 9 is {-3,3}. This makes it hard to match up the elements. This example highlights why it is important to start with the domain rather than the range.
Answer:
(x-9)^2
Step-by-step explanation:
Answer is : 6 4/6
in simplest form is : 6 2/3
Answer:
1/2 log2
Step-by-step explanation:
I hope you understand