Answer:
Please find attached the image of the quadrilateral TRAM after a rotation of -90 degrees, created with MS Excel
Step-by-step explanation:
The given coordinates of the vertices of the quadrilateral TRAM are;
T(-5, 1), R(-7, 7), A(-1, 7), M(-5, 4)
By a rotation of -90 degrees = Rotation of 90 degrees clockwise, we get;
The coordinates of the preimage before rotation = (x, y)
The coordinates of the image after rotation = (y, -x)
Therefore, we get for the the quadrilateral T'R'A'M', by rotating TRAM -90 degrees as follows;
T(-5, 1) → T'(1, 5)
R(-7, 7) → R'(7, 7)
A(-1, 7) → A'(7, 1)
M(-5, 4) → M'(4, 5)
The image of TRAM after -90 degrees rotation is created by plotting the derived points of the quadrilateral T'R'A'M' on MS Excel and joining the corresponding points as presented in the attached diagram.
Answer:
C) Similar but not congruent
Step-by-step explanation:
These figures are similar not congruent because:
In order for a triangle to be congruent it has to be the same size and shape.
There is no such thing as congruent but not similar as if it's congruent it is similar.
However, in order for a triangle to be similar it must have the same shape( angles).
So we can see that both triangles are isoceles and the sides of each are in a ratio of 2:1. Meaning that the bigger triangle has sides that are exactly twice as large as the smaller trinage. This also means that the angles are equal. Hence they are similar but not congruent.
Z = xy
To solve for y, divide both sides by x.
Y = z/x
Answer:
hello : let x this number
Step-by-step explanation:
x/3 = 4
Answer:
a) 4x + 3y ≤ 60
b) 6 for x and 11 for y
Step-by-step explanation:
b) 4x + 3y ≤ 60
4(6) + 3(11) ≤ 60
24 + 33 ≤ 60
57 ≤ 60