Answer:
1.736m/s²
Explanation:
According to Newton's second law;

where;
Fm is the moving force = 70.0N
Ff is the frictional force acting on the body

is the coefficient of friction
m is the mass of the object
g is the acceleration due to gravity
a is the acceleration/deceleration
The equation becomes;

Substitute the given parameters

Hence the deceleration rate of the wagon as it is caught is 1.736m/s²
-- If velocity is constant, then there is no net force
on the chair.
-- If there is no net force on the chair, then friction
must exactly balance out your push.
-- The force of friction is exactly equal in magnitude
to your push, and in exactly the opposite direction.
Answers:
a) -171.402 m/s
b) 17.49 s
c) 1700.99 m
Explanation:
We can solve this problem with the following equations:
(1)
(2)
(3)
Where:
is the bomb's final height
is the bomb's initial height
is the bomb's initial vertical velocity, since the airplane was moving horizontally
is the time
is the acceleration due gravity
is the bomb's range
is the bomb's initial horizontal velocity
is the bomb's final velocity
Knowing this, let's begin with the answers:
<h3>b) Time
</h3>
With the conditions given above, equation (1) is now written as:
(4)
Isolating
:
(5)
(6)
(7)
<h3>a) Final velocity
</h3>
Since
, equation (3) is written as:
(8)
(9)
(10) The negative sign only indicates the direction is downwards
<h3>c) Range
</h3>
Substituting (7) in (2):
(11)
(12)
An Inverted Microscope gives you more freedom than an upright microscope. Inverted microscopes are very useful
to examine the surface of heavy and large sized Items
for industrial purposes. Whereas <span>upright microscopes have very limited distance between the table and the objective.</span>
The wave speed completely depends on the characteristics and properties of the medium . . . physical properties for mechanical waves, electrical properties for electromagnedtic waves.
So if you want to change the speed of a wave, you have to change the medium . . . shoot it through some different kind of stuff. <em>(B) </em>