Answer:
The equivalent series resistance of a capacitor is the internal resistance that appears in series with the capacitance of the device. Almost all capacitors exhibit this property at varying degrees depending on the construction, dielectric materials, quality, and reliability of the capacitor.
Explanation:
Hope this helps
Answer:
(a) t = 5.66 s
(b) t = 8 s
Explanation:
(a)
Here we will use 2nd equation of motion for angular motion:
θ = ωi t + (1/2)∝t²
where,
θ = Angular Displacement = (3.7 rev)(2π rad/1 rev) = 23.25 rad
ωi = initial angular speed = 0 rad/s
t = time = ?
∝ = angular acceleration = 1.45 rad/s²
Therefore,
23.25 rad = (0 rad/s)(t) + (1/2)(1.45 rad/s²)t²
t² = (23.25 rad)(2)/(1.45 rad/s²)
t = √(32.06 s²)
<u>t = 5.66 s</u>
<u></u>
(b)For next 3.7 rev
θ = ωi t + (1/2)∝t²
where,
θ = Angular Displacement = (3.7 rev + 3.7 rev)(2π rad/1 rev) = 46.5 rad
ωi = initial angular speed = 0 rad/s
t = time = ?
∝ = angular acceleration = 1.45 rad/s²
Therefore,
46.5 rad = (0 rad/s)(t) + (1/2)(1.45 rad/s²)t²
t² = (46.5 rad)(2)/(1.45 rad/s²)
t = √(64.13 s²)
<u>t = 8 s</u>
Answer:
current would double
Explanation:
According To Ohm's Law, the current in a conducting wire depends on the voltage drop across the two ends of the wire. It can be expressed as:
I ∝ V
⇒ V = I R
where, R is the resistance and proportionality constant.
In the given case, the resistance of the circuit remains same while the voltage drop has increased to twice the initial value by changing the battery. This will the cause the current to double as well from its previous value.
Answer:
Newton's second law of motion describes the relationship between force and acceleration. They are directly proportional. If you increase the force applied to an object, the acceleration of that object increases by the same factor. In short, force equals mass times acceleration.
Explanation:
Hope this helps :)
pls mark brainliest :P
Answer:
The answer to your question is:
Explanation:
Data
Duane Albert
d = 5 m ; v = 3 m/s v = 4.2 m/s
a) b)
Duane's Albert's
d = 5 + (3)t d = 4.2t
d = 5 + 3t
c) 5 + 3t = 4.2t
4.2t - 3t = 5
1.2t = 5
t = 4.17 s
d)
Duane's
d= 5 + 3(4.17)
d = 17.51 m
Alberts
d = 4.2(4.17)
d = 17.51 m