I think the answer is B but the problem in this part is that the South American plate has moved over time. You see the difference?
Answer: 0.16
Explanation:
Newton's second law states that the resultant of the forces exerted on the bookcase is equal to the product between the mass (m) and the acceleration (a):

where
F = 58 N is the force applied
Ff is the frictional force
Substituting, we find the frictional force

The frictional force has the form:

where
is the coefficient of kinetic friction. Re-arranging the formula, we can find the coefficient:

Answer: C) divide: distance ÷ velocity
Explanation:
The velocity
equation is distance
divided by time
:

If we isolate
we will have:

Hence, the correct option is C: distance divided by velocity.
The wave height is equal to twice the amplitude of the wave.
The wave height of a wave of given wave with amplitude, period and wavelength is equal to twice the amplitude of the wave.
The amplitude of a wave is the maximum displacement of the wave, starting from the zero position of the wave. The wave height measures twice the maximum displacement of the wave.
Thus, we can conclude that the wave height is equal to twice the amplitude of the wave.
Learn more here:brainly.com/question/21431500
Well, we know that the total energy in a closed system remains constant.
The problem with the story of Eva is that she is not in a closed system.
If the dark room were really a closed system, then she could press the
button or turn the switch all day, and the lamp could not light. It needs
electrical energy coming in from somewhere in order to turn on.
Let's say that Eva used her arm muscles to strike a match and light the
candle on the table. Then we would have have food energy, muscle
energy, chemical energy in the match, chemical energy in the candle,
heat and light energy coming out of the candle, heat energy soaking into
her hand, light energy bouncing off of the book and into her eyes ... all
going on during the story, and the sum total of all of them would remain
constant.